Ⅰ 儒家稱康熙皇帝編成的六部典籍為什麼
康熙皇帝編成的六部典籍為:《康熙字典》、《古今圖書集成》、《歷象考成》、《數理精蘊》、《康熙永年歷法》、《康熙皇輿全覽圖》。
1、《康熙字典》
作者是張玉書、陳廷敬等,它是在明朝梅膺祚《字匯》、張自烈《正字通》兩書的基礎上加以增訂的。該書的編撰工作始於康熙四十九年即公元1710年,成書於康熙五十五年即公元1716年,歷時六年,因此書名叫《康熙字典》。
2、《古今圖書集成》
原名《古今圖書匯編》,全書共10000卷,目錄40卷,是清朝康熙時期由福建侯官人陳夢雷(1650-1741)所編輯的大型類書。該書編輯歷時28年,共分6編32典,是現存規模最大、資料最豐富的類書。
3、《歷象考成》
《歷象考成》是清代的一部論述歷法推算的著作。康熙年間,由欽天監內外人員加以修訂,編成《歷象考成》一書。
4、《數理精蘊》
《數理精蘊》是一部融中西數學於一體,內容豐富的「初等數學網路全書」,包括上編五卷,下編四十卷,數學用表四種八卷。上編名為立綱明體,主要內為《幾何原本》,《演演算法原本》。
5、《康熙永年歷法》
1678南懷仁編成《康熙永年歷法》三十二卷。這部天文表分為八個部分——日、月、火星、水星、木星、金星、土星、以及交食,每一部分名四卷。各部分的開始給出一些基本數據,然後給出某一天體兩千年的星歷表。根據這些星歷表,就可以很容易地編出民歷。
6、《康熙皇輿全覽圖》
《康熙皇輿全覽圖》是聘請西洋傳教士經過經緯度測量繪制而成。該地圖經過十年的實地測繪,於1718年初步完成。地圖描繪范圍東北至庫頁島,東南至台灣, 西至伊犁河,北至北海(貝加爾湖),南至崖州(今海南島)。
Ⅱ 數學的歷史進程
1(前3500-前500)數學起源與早期發展: 古埃及數學、美索不達米亞(古巴比倫)數學
2(前600-5世紀)古代希臘數學:論證數學的發端、歐式幾何
3(3世紀-14世紀)中世紀的中國數學、印度數學、阿拉伯數學:實用數學的輝煌
4(12世紀-17世紀)近代數學的興起:代數學的發展、解析幾何的誕生
5(14世紀-18世紀)微積分的建立:牛頓與萊布尼茨的微積分建立
6(18世紀-19世紀)分析時代:微積分的各領域應用
7(19世紀)代數的新生:抽象代數產生(近世代數)
8(19世紀)幾何學的變革:非歐幾何
9(19世紀)分析的嚴密化:微積分的基礎的嚴密化
10二十世紀的純粹數學的趨勢
11二十一世紀應用數學的天下
中國 數學的歷史進程
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間﹝法則是:一縱十橫,百立千僵,千、十相望,萬、百相當﹞,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理﹝西方稱勾股定理﹞的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
二、中國數學體系的形成與奠基
這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。
西漢末年﹝公元前一世紀﹞編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年﹝公元前一世紀﹞。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。
同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。
隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》﹝包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》﹞,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章演算法》﹝1261﹞、《日用演算法》﹝1262﹞和《楊輝演算法》﹝1274-1275﹞,朱世傑的《算學啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)
公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。
公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》﹝1592﹞問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。
十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷﹝1607﹞,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》﹝2卷,1631﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷,1631﹞。在徐光啟主持編譯的《崇禎歷書》﹝137卷,1629-1633﹞中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》﹝53卷,1723﹞,是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》﹝約1859﹞中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷﹝1795-1810﹞,開數學史研究之先河。
八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷﹝1857﹞,使中國有了完整的《幾何原本》中譯本;《代數學》13卷﹝1859﹞;《代微積拾級》18卷﹝1859﹞。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷﹝1872﹞,《微積溯源》8卷﹝1874﹞,《決疑數學》10卷﹝1880﹞等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
九、中國現代數學的建立
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來﹝1915年轉留法﹞,1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學﹝今南京大學﹞和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵﹝1927﹞、陳省身﹝1934﹞、華羅庚﹝1936﹞、許寶騤﹝1936﹞等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素﹝1920﹞,美國的伯克霍夫﹝1934﹞、奧斯古德﹝1934﹞、維納﹝1935﹞,法國的阿達馬﹝1936﹞等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊﹝1952年改為《數學學報》﹞,1951年10月《中國數學雜志》復刊﹝1953年改為《數學通報》﹞。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》﹝1953﹞、蘇步青的《射影曲線概論》﹝1954﹞、陳建功的《直角函數級數的和》﹝1954﹞和李儼的《中算史論叢》5集﹝1954-1955﹞等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
Ⅲ 《九章算術》是什麼時候流傳下來的
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年(前1世紀),一直流傳至今,是中國現有傳本的最古老的數學著作。《九章算術》是我國古代勞動人民在長期的生產實踐中積累起來的數學知識的結晶,為我國古代數學的發展奠定了基礎。全書採用問題集的形式編寫,共收有246個數學問題,分做9大類,就是「九章」。其內容涉及算術、初等代數、初等幾何等各個方面。其中關於多元一次方程組解法的記載是世界上最早的,比印度早400多年,比歐洲早1300多年。關於正負數的概念,正負數加減法則的記載也是世界上最早的,歐洲到16~17世紀才有正負數的概念。關於開平方、開立方以及一般二次方程的解法等在世界上也都是最早的。
《九章算術》注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的出現,標志著中國古代數學體系的形成,其計算與實用的顯著優點,彌補了以歐幾里德《幾何原本》為代表的具有高度抽象性和邏輯系統性的古希臘數學體系的不足之處,標志著從公元前1世紀開始,中國取代古希臘成為世界數學的中心,為此後中國數學領先世界1500多年奠定了基礎。《九章算術》不僅在我國古代數學史上有很大影響,在世界數學史上也佔有重要地位。《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯地區,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。在歐洲和阿拉伯的早期數學著作中,過剩與不足問題的演算法,就被稱為「中國演算法」。
現在,作為世界古典科學名著,它已經被譯成俄文、德文、日文等文字,受到世界各國的重視。今天,隨著計算機的出現和發展,它所蘊含的演算法和程序化思想,仍給數學家以啟迪。吳文俊先生指出:「《九章》所蘊含的思想影響,必將日益顯著,在下一世紀中凌駕於《原本》思想體系之上,不僅不無可能,甚至說是殆成定局,本人認為也絕非過甚妄測之辭。」