❶ 數學史對數學教育意義有什麼意義
數學史既屬史學領域,又屬數學科學領域,因此數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段;
在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是「古」與「今」間的一種聯系。
數學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。
通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。
(1)數學史大學中學什麼擴展閱讀:
數學史的研究范圍:
按研究的范圍又可分為內史和外史:
1、內史:從數學內在的原因(包括和其他自然科學之間的關系)來研究數學發展的歷史;
2、外史:從外在的社會原因(包括政治、經濟、哲學思潮等原因)來研究數學發展與其他社會因素間的關系。
數學史和數學研究的各個分支,和社會史與文化史的各個方面都有著密切的聯系,這表明數學史具有多學科交叉與綜合性強的性質。
從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。
從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。
❷ 學習數學史的意義
學習數學史,有其科學意義、文化意義和教育意義。
1、數學史的科學意義:
數學科學具有悠久的歷史,與自然科學相比,數學更是積累性科學,其概念和方法更具有延續性,比如古代文明中形成的十進位值制記數法和四則運演算法則,我們今天仍在使用,數學傳統與數學史材料可以在現實的數學研究中獲得發展。
2、數學史的文化意義
數學不僅是一種方法、一門藝術或一種語言,數學更主要是一門有著豐富內容的知識體系。數學已經廣泛地影響著人類的生活和思想,是形成現代文化的主要力量。因而數學史是從一個側面反映的人類文化史,又是人類文明史的最重要的組成部分。
3、數學史的教育意義
數學教材業已經過千錘百煉,是在科學性與教育要求相結合的原則指導下經過反復編寫的,是將歷史上的數學材料按照一定的邏輯結構和學習要求加以取捨編纂的知識體系,這樣就必然舍棄了許多數學概念和方法形成的實際背景、知識背景、演化歷程以及導致其演化的各種因素。
因此僅憑數學教材的學習,難以獲得數學的原貌和全景,同時忽視了那些被歷史淘汰掉的但對現實科學或許有用的數學材料與方法,而彌補這方面不足的最好途徑就是通過數學史的學習。
(2)數學史大學中學什麼擴展閱讀
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。
作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是「古」與「今」間的一種聯系。
❸ 數學史的意義和價值
1、數學史的科學意義
每門科學都有其發展史。作為一門歷史科學,它既有歷史性,又有現實性。它的現實性首先體現在科學概念和方法的連續性上。今天的科學研究在一定程度上深化和發展了歷史上的科學傳統或解決了歷史上的科學問題。因此,把科學現實與科學史的關系割裂開來是不可能的。
2、數學史的文化意義
美國數學史學家克萊因曾說過:「一個時代的總體特徵在很大程度上與其數學活動密切相關。這種關系在我們這個時代尤為明顯。」數學不僅是一種方法、一門藝術、一門語言,而且是一個內容豐富的知識體系。它的內容對自然科學家、社會科學家、哲學家、邏輯學家和藝術家非常有用,並影響著政治家和神學家的理論。」
3、數學史的教育意義
在學習了數學史之後,我們自然會覺得數學的發展是不符合邏輯的,或者說數學發展的實際情況與我們今天所學的數學教科書有很大的不同。中學數學的內容屬於17世紀微積分之前的數學基礎知識,而大學數學系的大部分內容是17、18世紀的高等數學。
(3)數學史大學中學什麼擴展閱讀:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現數學發展的原貌,對數學成果作出科學合理的解釋、解釋和評價,通過這些歷史現象,探索數學科學發展的理論體系和發展模式,從而探尋數學科學發展的規律和文化本質。
作為研究數學史的基本方法和手段,有歷史考證、數學分析、比較研究等多種方法。在中國古代算術的眾多研究成果中,長期以來孕育了西方數學設計的先進思想和方法。近代以來,許多世界領先的數學研究成果都是以中國數學家的名字命名的。
❹ 數學系要學哪些專業課程
數學專業的專業課程有:
一、數學分析
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
二、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
三、復變函數論
復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
四、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
五、近世代數
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。
法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
參考資料來源:
網路—數學分析
網路—高等代數
網路—復變函數論
網路—抽象代數
網路—近世代數
❺ 大學數學系學什麼
其實大學數學系教的東西大同小異,來來去去就是這么些課。
以北大數學系為例:首先肯定是數學分析(公共基礎課),然後就是高等代數,幾何學,抽象代數,復變函數,ODE,數學模型,概率論,數理統計,實變函數,泛函分析,PDE,拓撲,微分幾何,微分流形,數論,群表示,代數幾何(這門課985的數院肯定開,非985據我了解開的比較少,代幾比較偏研究生課程那一塊了,算是體諒學生的感受吧)。
以上是數學的專業必修課。
不過數院一般會要求學生在選修課裡面選一點物理,比如北大會叫學生在選修的時候自選8學分的物理課。
❻ 大學數學系主要學哪些數學課程啊!
數學系專業必修課程,主要包括:高等代數,數學分析,常微分方程,復變函數,解析幾學,拓撲學,實變函數,概率,數理統計等,這些課程主要是大一大二修,,學校不同,開設的略有不同。
師范類還設中學數學教學法,教育學、心理學;選修的有組合數學,數學軟體,小波分析,微分流形,偏微分方程,數學史等
❼ 大學本科數學專業的,都要學哪些科目
專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計:這三者是老三門,將來如果考研時要用到的。
近代數學的新三門是:拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。
另外其他的一些常見的分支包括復變函數、常微分、運籌、最優化,數學模型。