導航:首頁 > 數字科學 > 數學設計的研究對象是什麼

數學設計的研究對象是什麼

發布時間:2023-01-18 23:37:07

① 數學的研究對象

量感與數感

數學的研究對象是:數量與數量關系、圖形與圖形關系。最終的表達形式都是「數」。

傳統方法:數形結合(長度的實數表達)、定性數據定量化。

現在方法:數字化的時代,所有信息的數量化,網路、音像。

數是對數量的抽象,數量是度量的結果。

個數:一匹馬、兩頭牛、三件衣服;

長度:一尺、兩公里;

集合:個數、區間長度;

重量:一兩、兩公斤;

容積:一升、兩公升;

時間:年、時、分;

信息:比特;

數是對度量結果的抽象、是符號表達——數學的本質在於度量。

② 數學的研究對象是

數學,是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

數學的研究對象
研究對象是物質。在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,但當時的代數學和幾何學長久以來仍處於獨立的狀態。

③ 數學所研究的兩大對象是什麼

數學——研究現實世界的數量關系和空間形式的科學.
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學.
純粹數學也叫基礎數學,專門研究數學本身的內部規律.中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學.純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式.例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系.

④ 數學研究的對象是什麼

就是和數學有關的知識!
下面分別解釋什麼是數學,什麼是知識。
****************************************************************************
數學:
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」

自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。

從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
***********************************************************************************
知識:
知識到底是什麼,目前仍然有爭議。我國對知識的定義一般是從哲學角度作出的,如在《中國大網路全書·教育》中「知識」條目是這樣表述的:「所謂知識,就它反映的內容而言,是客觀事物的屬性與聯系的反映,是客觀世界在人腦中的主觀映象。就它的反映活動形式而言,有時表現為主體對事物的感性知覺或表象,屬於感性知識,有時表現為關於事物的概念或規律,屬於理性知識。」從這一定義中我們可以看出,知識是主客體相互統一的產物。它來源於外部世界,所以知識是客觀的;但是知識本身並不是客觀現實,而是事物的特徵與聯系在人腦中的反映,是客觀事物的一種主觀表徵,知識是在主客體相互作用的基礎上,通過人腦的反映活動而產生的。

上述定義為我們討論知識的內涵提供了哲學基礎。但宏觀的哲學反映論的認識還需要從個體認知角度進行具體化,這樣才能有效地用以指導學校的具體教學。

與哲學不同,認知心理學是從知識的來源、個體知識的產生過程及表徵形式等角度對知識進行研究的。例如,皮亞傑認為,經驗(即知識)來源於個體與環境的交互作用,這種經驗可分為兩類:一類是物理經驗,它來自外部世界,是個體作用於客體而獲得的關於客觀事物及其聯系認識;另一類是邏輯——數學經驗,它來自主體的動作,是個體理解動作與動作之間相互協調的結果。如兒童通過擺弄物體,獲得關於數量守恆的經驗,學生通過數學推理獲得關於數學原理的認識。皮亞傑對知識的定義是從個體知識的產生過程來表述的。布盧姆在《教育目標分類學》中認為知識是「對具體事物和普遍原理的回憶,對方法和過程的回憶,或者對一種模式、結構或框架的回憶」,這是從知識所包含的內容的角度說的,屬於一種現象描述。

我們認為,在理解知識的含義時,有必要把作為人類社會共同財富的知識與作為個體頭腦中的知識區分開來。人類社會的知識是客觀存在的,但個體頭腦中的知識並不是客觀現實本身,而是個體的一種主觀表徵,即人腦中的知識結構,它既包括感覺、知覺、表象等,又包括概念、命題、圖式,它們分別標志著個體對客觀事物反應的不同廣度和深度,這是通過個體的認知活動而形成的。一般來說,個體的知識以從具體到抽象的層次網路結構(認知結構)的形式存儲於大腦之中。哲學主要對人類社會共同知識的性質進行研究,心理學則主要對個體知識的性質進行研究。

有關知識的名言

高爾基: 愛護書籍吧,它是知識的源泉。

諾思科特: 博學的人是知識的蓄水池,而不是源泉。

不吸取知識之光,心靈就會被黑暗籠罩。

弗萊克斯: 大學是這樣一種機構:它自覺地獻身於對知識的追,力爭解決難題,用挑剔的眼光去評價人們的成就,並用真正的高水平去教育人。

切斯特菲爾德: 當我們步入晚年,知識將是我們舒適而必要的隱退的去處;如果我們年輕時不去栽種知識之樹,到老就沒有乘涼的地方了。

宋·朱熹: 當務之急,不求難知;力行所知,不憚所難為。

切斯特菲爾德: 讀書能獲得知識;但更有用的知識對世界的認識卻只能通過研究各種各樣的人才能獲得。

塞·約翰遜: 對知識的渴求是人類的自然意向,任何頭腦健全的人都會為獲取知識而不惜一切。

恩格斯: 復雜的勞動包含著需要耗費或多或少的辛勞、時間和金錢去獲得的技巧和知識的運用。

卡斯特: 管理者不承擔創造知識的任務,他的任務是有效地運用知識。

·里格斯: 經理人員的管理能力是他在品質、知識和經驗方面的功能。這三種因素相互作用形成一個特殊的管理方式。

鄧小平: 靠空講不能實現現代化,必須有知識,有人才。沒有知識,沒有人才,怎麼上得去?

科爾莫戈羅夫: 科學是人類的共同財富,而真正的科學家的任務就是豐富這個令人類都能受益的知識寶庫。

赫·斯賓塞: 科學是系統化了的知識。

約瑟夫·魯: 科學是為了那些勤奮好學的人,詩歌是為了那些知識淵博的人。

奧·霍姆斯: 科學是「無知」的局部解剖學。

叔本華: 沒有深厚經驗襯托的廣博思想和知識,就像是一本每頁僅有兩行正文卻有四十行注釋的教科書。

論衡: 人有知識,則有力矣。

實踐是知識的母親,知識是生活的明燈。

愛因斯坦: 學習知識要善於思考,思考,再思考。

⑤ 數學的研究對象有兩個方面,第一個是什麼與數有關

數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。
中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。作為一種數學思想方法,數形結合的應用大致又可分為兩種情形:或者藉助於數的精確性來闡明形的某些屬性,或者藉助形的幾何直觀性來闡明數之間某種關系,即數形結合包括兩個方面:第一種情形是「以數解形」,而第二種情形是「以形助數」。「以數解形」就是有些圖形太過於簡單,直接觀察卻看不出什麼規律來,這時就需要給圖形賦值,如邊長、角度等。

閱讀全文

與數學設計的研究對象是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:736
乙酸乙酯化學式怎麼算 瀏覽:1401
沈陽初中的數學是什麼版本的 瀏覽:1347
華為手機家人共享如何查看地理位置 瀏覽:1039
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:881
數學c什麼意思是什麼意思是什麼 瀏覽:1405
中考初中地理如何補 瀏覽:1296
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:698
數學奧數卡怎麼辦 瀏覽:1384
如何回答地理是什麼 瀏覽:1020
win7如何刪除電腦文件瀏覽歷史 瀏覽:1052
大學物理實驗干什麼用的到 瀏覽:1481
二年級上冊數學框框怎麼填 瀏覽:1696
西安瑞禧生物科技有限公司怎麼樣 瀏覽:964
武大的分析化學怎麼樣 瀏覽:1244
ige電化學發光偏高怎麼辦 瀏覽:1334
學而思初中英語和語文怎麼樣 瀏覽:1647
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1483
數學中的棱的意思是什麼 瀏覽:1054