導航:首頁 > 數字科學 > 初中數學問題方法有哪些

初中數學問題方法有哪些

發布時間:2023-01-20 01:48:36

初中數學解題思維方法大全

還在為初中數學解題而煩惱?還在為數學低分而煩躁?那是你沒有全面理解初中數學的解題思維和解題 方法 。暑假不出門,了解初中數學解題思維 方法大全 ,助你在新學期解決數學難題。

初中數學解題思維方法大全
一、選擇題的解法

1、直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。

2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關,在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。

3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。

4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用“走一走、瞧一瞧”的策略,每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。

5、數形結合法:根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。

二、常用的數學思想方法

1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。

2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。

5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執果尋因”

8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”

9、演繹法:由一般到特殊的推理方法。

10、歸納法:由一般到特殊的推理方法。

11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間,根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。

三、函數、方程、不等式

常用的數學思想方法:⑴數形結合的思想方法。⑵待定系數法。⑶配方法。⑷聯系與轉化的思想。⑸圖像的平移變換。

四、證明角的相等

1、對頂角相等。

2、角(或同角)的補角相等或餘角相等。

3、兩直線平行,同位角相等、內錯角相等。

4、凡直角都相等。

5、角平分線分得的兩個角相等。

6、同一個三角形中,等邊對等角。

7、等腰三角形中,底邊上的高(或中線)平分頂角。

8、平行四邊形的對角相等。

9、菱形的每一條對角線平分一組對角。

10、 等腰梯形同一底上的兩個角相等。

11、 關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對的圓心角相等。

12、 圓內接四邊形的任何一個外角都等於它的內對角。

13、 同弧或等弧所對的圓周角相等。

14、 弦切角等於它所夾的弧對的圓周角。

15、 同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。

16、 全等三角形的對應角相等。

17、 相似三角形的對應角相等。

18、 利用等量代換。

19、 利用代數或三角計算出角的度數相等

20、 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。

五、證明直線的平行或垂直

1、證明兩條直線平行的主要依據和方法:

⑴、定義、在同一平面內不相交的兩條直線平行。

⑵、平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。

⑶、平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。

⑷、平行四邊形的對邊平行。

⑸、梯形的兩底平行。

⑹、三角形(或梯形)的中位線平行與第三邊(或兩底)

⑺、一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。

2、證明兩條直線垂直的主要依據和方法:

⑴、兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。

⑵、直角三角形的兩直角邊互相垂直。

⑶、三角形的兩個銳角互余,則第三個內角為直角。

⑷、三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。

⑸、三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。

⑹、三角形(或多邊形)一邊上的高垂直於這邊。

⑺、等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。

⑻、矩形的兩臨邊互相垂直。

⑼、菱形的對角線互相垂直。

⑽、平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。

⑾、半圓或直徑所對的圓周角是直角。

⑿、圓的切線垂直於過切點的半徑。

⒀、相交兩圓的連心線垂直於兩圓的公共弦。

六、證明線段的比例式或等積式的主要依據和方法:

1、比例線段的定義。

2、平行線分線段成比例定理及推論。

3、平行於三角形的一邊,並且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例。

4、過分點作平行線;

5、相似三角形的對應高成比例,對應中線的比和對應角平分線的比都等於相似比。

6、相似三角形的周長的比等於相似比。

7、相似三角形的面積的比等於相似比的平方。

8、相似三角形的對應邊成比例。

9、通過比例的性質推導。

10、用代數、三角方法進行計算。

11、藉助等比或等線段代換。

七、幾何作圖

1、掌握最基本的五種尺規作圖

⑴、作一條線段等於已知線段。

⑵、作一個角等於已知角。

⑶、平分已知角。

⑷、經過一點作已知直線的垂線。

⑸、作線段的垂直平分線。

2、掌握課本中各章要求的作圖題

⑴、根據條件作任意的三角形、等要素那角性、直角三角形。

⑵、根據給出條件作一般四邊形、平行四邊形、矩形、菱形、正方形、梯形等。

⑶、作已知圖形關於一點、一條直線對稱的圖形。

⑷、會作三角形的外接圓、內切圓。

⑸、平分已知弧。

⑹、作兩條線段的比例中項。

⑺、作正三角形、正四邊形、正六邊形等。

八、幾何計算

(一)、角度與弧度的計算

1、三角形和四邊形的角的計算主要依據

⑴、三角形的內角和定理及推論。

⑵、四邊形的內角和定理及推論。

⑶、圓內接四邊形性質定理。

2、弧和相關的角的計算主要依據

⑴、圓心角的度數等於它所對的弧的度數。

⑵、圓周角的度數等於它所對的弧的度數的一半。

⑶、弦切角的度數等於所夾弧度數的一半。

3、多邊形的角的計算主要依據

⑴、n邊形的內角和=(n-2)*180°

⑵、正n邊形的每一內角=(n-2)*180°÷n

⑶、正n邊形的任一外角等於各邊所對的中心角且都等於

(二)、長度的計算

1、 三角形、平行四邊形和梯形的計算

用到的定理主要有三角形全等定理,中位線定理,等腰三角形、直角三角形、正三角形及各種平行四邊形的性質等定理。關於梯形中線段計算主要依據梯形中位線定理及等腰梯形、直角梯形的性質定理等。

2、 有關圓的線段計算的主要依據

⑴、切線長定理

⑵、圓切線的性質定理。

⑶、垂徑定理。

⑷、圓外切四邊形兩組對邊的和相等。

⑸、兩圓外切時圓心距等於兩圓半徑之和,兩圓內切時圓心距等於兩半徑之差。

3、 直角三角形邊的計算

直角三角形邊長的計算應用最廣,其理論依據主要是勾股定理和特殊角三角形的性質及銳角三角函數等。

4、 成比例線段長度的求法

⑴、平行線分線段成比例定理;

⑵、相似形對應線段的比等於相似比;

⑶、射影定理;

⑷、相交弦定理及推論,切割線定理及推論;

⑸、正多邊形的邊和其他線段計算轉化為特殊三角形。

三、圖形面積的計算

1、 四邊形的面積公式

⑴、S□ABCD = a·h

⑵、S菱形 = 1/2a·b (a、b為對角線)

⑶、S梯形 = 1/2(a + b)·h = m·h (m為中位線)

2、 三角形的面積公式

⑴、S△ = 1/2· a·h

⑵、S△ = 1/2· P·r(P為三角形周長,r為三角形內切圓的半徑)

3、 S正多邊形 = 1/2· P n·r n = 1/2·n a n·r n

4、 S圓 =πR2

5、S扇形 = nπ= 1/2LR

6、S弓形 = S扇 - S△

九、證明兩線段相等的方法:

⑴、利用全等三角形對應線段相等;

⑵、利用等腰三角形性質;

⑶、利用同一個三角形中等角對等邊;

⑷、利用線段垂直平分線;

⑸、角平分線的性質;

⑹、利用軸對稱的性質;

⑺、平行線等分線段定理;

⑻、平行四邊形性質;

⑼、垂徑定理:垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。推論1:平分一條弦所對的弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。

⑽、圓心角、弧、弦、弦心距的關系定理及推論;

⑾、切線長定理。

十、證明弧相等的方法:

⑴、定義;同圓或等圓中,能夠完全重合的兩段弧。

⑵、垂徑定理:垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。

推論1:①平分弦(不是直徑)的直徑垂直弦,並且平分弦所對的兩條弧。

②垂直平分一條弦的直線,經過圓心,並且平分弦所對的兩條弧。

③平分一條弦所對的弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。

推論2:兩條平行弦所夾的弧相等

⑶、圓心角、弧、圓周角之間度數關系;(圓心角 = 弧 = 2圓周角)

⑷、圓周角定理的推論1;(同弧或等弧所對的圓周角相等,同圓或等圓中相等的圓周角所對的弧相等)

十一、切線小結

1、證明切線的三種方法:

⑴、定義——一個交點;

⑵、d=r;(若一條直線到圓心的距離等於半徑,則這條直線是圓的切線)

⑶、切線的判定定理;(經過半徑外端,並且垂直這條半徑的直線是圓的切線)

2、切線的八個性質:

⑴、定義:唯一交點;

⑵、切線和圓心的距離等於半徑; (d=r)

⑶、切線的性質定理:圓的切線垂直於過切點的半徑;

⑷、推論1:過圓心(且垂直於切線的直線)必過切點;

⑸、推論2:過切點(且垂直於切線的直線)必過圓心;

⑹、切線長相等;過圓外一點作圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩切線的夾角。

⑺、連結兩平行切線切點間的線段為直徑

⑻、經過直徑兩端點的切線互相平行。

3、證明切線的兩種類型:

⑴、已知直線和圓相交於一點

證明方法:連交點,證垂直

⑵、未知直線和圓是否相交於哪點或沒告訴交點

證明方法:做垂直,證半徑

十二、輔助線的作用與添加方法:

輔助線是溝通已知與未知的橋梁.現已學過的添加輔助線方法有:

1、梯形的七類輔助線:

⑴、作梯形的高;

⑵、延長兩腰;

⑶、平移一腰;

⑷、平移對角線;

⑸、利用中點;

⑹、連結兩腰中點;

2、一般的輔助線

⑴、過兩定點作直線;

⑵、作三角形的高、中線、角平分線;

⑶、延長某一線段;

⑷、作一點關於已知直線的對稱點;

⑸、構造直角三角形;

⑹、作平行線;

⑺、作半徑;

⑻、弦心距;

⑼、構造直徑上的圓周角;

⑽、兩圓相交時常連公共弦;

⑾、構造相交弦;

⑿、見中點連中點構造中位線;

⒀、兩圓外切時作內公切線;

⒁、兩圓內切時作外公切線;

⒂、作輔助圖形(如勾股定理逆定理的證明中作輔助三角形);

初中數學解題思維方法大全相關 文章 :

1. 初中數學解題方法

2. 初中數學的解題方法

3. 初中數學方法有哪些

4. 初中數學學習好方法

5. 初中數學思想方法教學論文

❷ 史上最全的初中數學解題方法大全

今天,跟大家分享30道很經典的中考選擇填空壓軸題,附帶詳細的講解分析。同時也給大家分享一些選擇填空的解題技巧。希望能夠幫到同學們。
選擇題法大全
方法一:排除選項法
選擇題因其答案是四選一,必然只有一個正確答案,那麼我們就可以採用排除法,從四個選項中排除掉易於判斷是錯誤的答案,那麼留下的一個自然就是正確的答案。
方法二:賦予特殊值法
即根據題目中的條件,選取某個符合條件的特殊值或作出特殊圖形進行計算、推理的方法。用特殊值法解題要注意所選取的值要符合條件,且易於計算。
方法三:通過猜想、測量的方法,直接觀察或得出結果
這類方法在近年來的初中題中常被運用於探索規律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、總結、歸納等過程使問題得解。
方法四:直接求解法
有些選擇題本身就是由一些填空題、判斷題、解答題改編而來的,因此往往可採用直接法,直接由從題目的條件出發,通過正確的運算或推理,直接求得結論,再與選擇項對照來確定選擇項。我們在做解答題時大部分都是採用這種方法。
例如:商場促銷活動中,將標價為200元的商品,在打8折的基礎上,再打8折銷售,現該商品的售價是( )
A 、160元 B、128元 C 、120元 D、 88元
方法五:數形結合法
解決與圖形或圖像有關的選擇題,常常要運用數形結合的思想方法,有時還要綜合運用其他方法。
方法六:代入法
將選擇支代入題干或題代入選擇支進行檢驗,然後作出判斷。
方法七:觀察法
觀察題干及選擇支特點,區別各選擇支差異及相互關系作出選擇。
方法八:枚舉法
列舉所有可能的情況,然後作出正確的判斷。
例如:把一張面值10元的人民幣換成零錢,現有足夠面值為2元,1元的人民幣,換法有( )
A.5種 B.6種 C.8種 D.10種
分析:如果設面值2元的人民幣x張,1元的人民幣y元,不難列出方程,此方程的非負整數解有6對,故選B。
方法九:待定系數法
要求某個函數關系式,可先假設待定系數,然後根據題意列出方程(組),通過解方程(組),求得待定系數,從而確定函數關系式,這種方法叫待定系數法。
方法十:不完全歸納法
當某個數學問題涉及到相關多乃至無窮多的情形,頭緒紛亂很難下手時,行之有效的方法是通過對若干簡單情形進行考查,從中找出一般規律,求得問題的解決。
以上是我們給同學們介紹的初中數學選擇題的答題技巧,希望同學們認真掌握,選擇題的分數一定要拿下。初中數學答題技巧有以上十種,能全部掌握的最好;不能的話,建議同學們選擇集中適合自己的初中數學選擇題做題方法。
填空題解法大全
一、填空題特點分析
與選擇題同屬客觀性試題的填空題,具有客觀性試題的所有特點,即題目短小精幹,考查目標集中明確,答案唯一正確,答卷方式簡便,評分客觀公正等。
但是它又有本身的特點,即沒有備選答案可供選擇,這就避免了選擇項所起的暗示或干擾的作用,及考生存在的瞎估亂猜的僥幸心理,從這個角度看,它能夠比較真實地考查出學生的真正水平。
考查內容多是「雙基」方面,知識覆蓋面廣。但在考查同樣內容時,難度一般比擇題略大。
二、主要題型
初中填空題主要題型一是定量型填空題,主要考查計算能力的計算題,同時也考查考生對題目中所涉及到數學公式的掌握的熟練程度;二是定性型填空題,考查考生對重要的數學概念、定理和性質等數學基礎知識的理解和熟練程度。
當然這兩類填空題也是互相滲透的,對於具體知識的理解和熟練程度只不過是考查有所側重而已。
填空題一般是一道題填一個空格,當然個別省市也有例外。江西省還出了一道「先閱讀,後填空」的試題,它首先列舉了30名學生的數學成績,給出頻率分布表,然後要求考生回答六小道填空題,這也可以說是一種新題型。
這種先閱讀一段短文,在理解的基礎上,要求解答有關的問題,是近年悄然興起的閱讀理解題。
它不僅考查了學生閱讀理解和整理知識的能力,同時提醒考生平時要克服讀書囫圇吞棗、不求甚解的不良習慣。這種新題型的出現,無疑給填空題較寂靜的湖面投了一個小石子。

❸ 初中至初三數學解題方法有哪些

1、配方法;所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成—個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。

2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。

3、換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、構造法;在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起—座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

❹ 初中數學考試要掌握哪些答題的技巧

數學復習是一個系統的工程,許多同學都在想,如何才能掌握技巧,更好地利用寶貴有限的時間,讓自己能夠取得一個不錯的成績?

今天小編整理了初中各個題型的解題技巧給大家,希望大家能在將來中考獲得好成績。

初中數學解題方法總結

一、選擇題的解法

1、直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。

2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關;

在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。

3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。

4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用「走一走、瞧一瞧」的策略;

每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。

5、數形結合法:根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;

使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。

二、常用的數學思想方法

1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;

使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。

2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。

在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。

如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;

這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。

為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。

5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。

配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。

換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;

則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」

8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」

9、演繹法:由一般到特殊的推理方法。

10、歸納法:由一般到特殊的推理方法。

11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;

根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。

類比法既可能是特殊到特殊,也可能一般到一般的推理。

三、函數、方程、不等式

常用的數學思想方法:

(1)數形結合的思想方法。

(2)待定系數法。

(3)配方法。

(4)聯系與轉化的思想。

(5)圖像的平移變換。

四、證明角的相等

1、對頂角相等。

2、角(或同角)的補角相等或餘角相等。

3、兩直線平行,同位角相等、內錯角相等。

4、凡直角都相等。

5、角平分線分得的兩個角相等。

6、同一個三角形中,等邊對等角。

7、等腰三角形中,底邊上的高(或中線)平分頂角。

8、平行四邊形的對角相等。

9、菱形的每一條對角線平分一組對角。

10、等腰梯形同一底上的兩個角相等。

11、關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對的圓心角相等。

12、圓內接四邊形的任何一個外角都等於它的內對角。

13、同弧或等弧所對的圓周角相等。

14、弦切角等於它所夾的弧對的圓周角。

15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。

16、全等三角形的對應角相等。

17、相似三角形的對應角相等。

18、利用等量代換。

19、利用代數或三角計算出角的度數相等

20、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。

五、證明直線的平行或垂直

1、證明兩條直線平行的主要依據和方法:

(1)定義、在同一平面內不相交的兩條直線平行。

(2)平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。

(3)平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。

(4)平行四邊形的對邊平行。

(5)梯形的兩底平行。

(6)三角形(或梯形)的中位線平行與第三邊(或兩底)

(7)一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。

2、證明兩條直線垂直的主要依據和方法:

(1)兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。

(2)直角三角形的兩直角邊互相垂直。

(3)三角形的兩個銳角互余,則第三個內角為直角。

(4)三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。

(5)三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。

(6)三角形(或多邊形)一邊上的高垂直於這邊。

(7)等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。

(8)矩形的兩臨邊互相垂直。

(9)菱形的對角線互相垂直。

(10)平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。

(11)半圓或直徑所對的圓周角是直角。

(12)圓的切線垂直於過切點的半徑。

(13)相交兩圓的連心線垂直於兩圓的公共弦。

❺ 初中數學解題方法歸納總結

想要在初中學好數學,學會解題是關鍵。那麼初中數學解題方法有哪些呢?為了幫助同學們更好的學習數學,我給大家整理了初中數學解題方法。
初中數學解題方法歸納
1. 觀察與實驗

( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。

( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。

2. 比較與分類

( 1 )比較法

是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。

( 2 )分類的方法

分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。

3 .特殊與一般

( 1 )特殊化的方法

特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。

( 2 )一般化的方法

4. 聯想與猜想

( 1 )類比聯想

類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。

通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:

( 2 )歸納猜想

牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。

歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。

5. 換元與配方

( 1 )換元法

數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。

( 2 )配方法

配方法是對數學式子進行一種定向變形(配成“完全平方”)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用“裂項”與“添項”、“配”與“湊”的技巧,從而完成配方。有時也將其稱為“湊配法”。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式

6. 構造法與待定系數法

( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。

( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。

7. 公式法與反證法

( 1 )公式法

利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:

( 2 )反證法是“間接證明法”一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。
初中學數學解題技巧
1. 數學探索題

所謂探索題就是從問題給定的題設條件中探究其相應的結論並加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。

條件探索題:解答策略之一是將題設和結論視為已知,同時推理,在演繹的過程中尋找出相應所需的條件。

結論探索題:通常指結論不確定不唯一,或結論需通過類比、引申、推廣,或給出特例需通過歸納得出一般結論。可以先猜測再去證明;也可以尋求具體情況下的結論再證明;或直接演繹推證。

規律探索題:實際就是探索多種解決問題的途徑,制定多種解題的策略。

活動型探索題:讓學生參與一定的社會實踐,在課內和課外的活動中,通過探究完成問題解決。

推廣型探索題:將一個簡單的問題,加以推廣,可產生新的結論,在初中教學中常見。如平行四邊形的判定,就可以產生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。

探索是數學的生命線,解探索題是一種富有創造性的思維活動,一種數學形式的探索絕不是單一的思維方式的結果,而是多種思維方式的聯系和滲透,這樣可使學生在學習數學的過程中敢於質疑、提問、反思、推廣。通過探索去經歷數學發現、數學探究、數學創造的過程,體會創造帶來的快樂。

2. 數學情境題

情境題是以一段生活實際、故事、歷史、游戲與數學問題、數學思想和方法於情境中。這類問題往往生動有趣,激發學生強烈的研究動機,但同時數學情景題又有信息量大,開放性強的特點,因此需要學生能從場景中提煉出數學問題,同時經歷了藉助數學知識研究實際問題的數學化過程。

如老師在講有理數的混合運算時,

3. 數學開放題

數學開放題是相對於傳統的封閉題而言的一種新題型,其特徵是題目的條件不充分,或沒有確定的結論,也正因為這樣,所以開放題的解題策略往往也是多種多樣的。

( 1 )數學開放題一般具有下列特徵

①不確定性:所提的問題常常是不確定的和一般性的,其背景情況也是用一般詞語來描述的,因此需收集其他必要的信息,才能著手解的題目。

②探究性:沒有現成的解題模式,有些答案可能易於直覺地被發現,但是求解過程中往往需要從多個角度進行思考和探索。

③非完備性:有些問題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在於尋求解答的過程中學生的認知結構的重建。

④發散性:在求解過程中往往可以引出新的問題,或將問題加以推廣,找出更一般、更概括性的結論。常常通過實際問題提出,學生必須用數學語言將其數學化,也就是建立數學模型。

⑤發展性:能激起多數學生的好奇性,全體學生都可以參與解答過程。

⑥創新性:教師難以用注入式進行教學,學生能自然地主動參與,教師在解題過程中的地位是示範者、啟發者、鼓勵者、合作者。

( 2 )對數學開放題的分類

從構成數學題系統的四要素(條件、依據、方法、結論)出發,定性地可分成四類;如果尋求的答案是數學題的條件,則稱為條件開放題;如果尋求的答案是依據或方法,則稱為策略開放題;如果尋求的答案是結論,則稱為結論開放題;如果數學題的條件、解題策略或結論都要求解題者在給定的情境中自行設定與尋找,則稱為綜合開放題。

從學生的學習生活和熟悉的事物中收集材料,設計成各種形式的數學開放性問題,意在開放學生的思路,開放學生潛在的學習能力,開放性數學問題給不同層次的學生學好數學創設了機會,多種解題策略的應用,有力地發展了學生的創新思維,培養了學生的創新技能,提高了學生的創新能力。

( 3 )以數學開放題為載體的教學特徵

①師生關系開放:教師與學生成為問題解決的共同合作者和研究者

②教學內容開放:開放題往往條件不完全、或結論不完全,需要收集信息加以分析和研究,給數學留下了創新的空間。

③教學過程的開放性:由於研究的內容的開放性可以激起學生的好奇心、同時由於問題的開放性,就沒有現成的解題模式,因此就會留下想像的空間,使所有的學生都可參與想像和解答。

( 4 )開放題的教育價值

有利於培養學生良好的思維品質;

有助於學生主體意識的形成;

有利於全體學生的參與,實現教學的民主性和合作性;

有利於學生體驗成功、樹立信心,增強學習的興趣;

有助於提高學生解決問題的能力。

4. 數學建模題(初中數學建模題也可以看作是數學應用題)

數學新課程標准指出 : 要學生會應用所學知識解決實際問題 , 能適應社會日常生活和生產勞動的基本需要。初中數學的學習目的之一 , 就是培養學生解決實際問題的能力 , 要求學生會分析和解決生產、生活中的數學問題 , 形成善於應用數學的意識和能力。從各省市的中考數學命題來看 , 也更關注學生靈活運用數學知識解決實際問題能力的考查 , 可以說培養學生解答應用題的能力是使學生能夠運用所學數學知識解決實際問題的基本途徑之一
初中數學應用問題類型
( 1 )探求結論型數學應用問題

根據命題中所給出的條件,要求找出一個或一個以上的正確結論

( 2 )跨學科的數學應用問題

①數學與物理

②數學與生化

以上兩題是與生物和化學有關的問題,體現了數學在生化學科的應用。

總之,數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。中考數學應用問題熱點題型主要包括生活、統計、測量、設計、決策、銷售、開放探索、跨學科等等,中考在強化學生應用意識和應用能力方面發揮及其良好的導向功能。這就要求我們在平時教學中善於挖掘課本例題、習題的潛在的應用功能。巧妙地將課本中具有典型意義的數學問題回歸生活、生產的原型,創設一個實際背景,改造成有深刻數學內涵的實際問題,以增強應用意識,發展數學建模能力。

四、掌握初中數學解題策略提來提高數學學習效率

(1)認真分析問題,找解題准切入點

由於數學問題紛繁復雜,學生容易受定勢思維的影響,這樣就會響解題思路造成很大的影響。為此,這時教師要給予學生正確指導,幫助學生進行思路的調整,對題目進行重新認真的分析,將切入點找准後,問題就能游刃而解了。例如:已知:AB=DC,AC=DB。求證:∠A=∠D。

此題是一道比較經典的證明全等的題型,主要是對學生對已知條件整合能力和觀察識圖能力的鍛煉。然而,從圖形的直觀角度來證明∠AOC=∠DOB,這樣的思路只會落入題目所設下的陷阱。為此,在對此題的審題時,教師要引導學生注意將題目已知的兩個條件充分結合起來考慮,提醒學生可以適當添加一定的輔助線。

(2)發揮想像力,藉助面積出奇制勝

面積問題是數學中常出現的問題,在面積定義及相關規律中,蘊含著深刻的數學思想,如果學生能充分了解其中的韻味,能夠熟練的掌握其中的數學論證思維,就有可能在其他數學問題中藉助面積,出奇制勝順利實現解題。由於幾何圖形的面積與線段、角、弧等有密切的聯系,所以用面積法不但可證各種幾何圖形面積的等量關系,還可證某些線段相等、線段不等、角的相等以及比例式等多種類型的幾何題。例1、 若E、F分別是矩形ABCD邊AB、CD的中點,且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長之比為( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1

由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設矩形EFDA與矩形ABCD的相似比為k。因為E、F分別是矩形ABCD的中點,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的寬與長之比為1∶2;故選(C)。

此題利用了“相似多邊形面積的比等於相似比平方”這一性質,巧妙解決相似矩形中的長與寬比的問題。事實上,藉助面積,形成解題思路的過程,就是學生思維轉換的過程。

(3)巧取特殊值,以簡代繁

初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其繁甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。

例2、分解因式:x2+2xy-8y2+2x+14y-3。

思路分析:本題是二元多項式,從常規思路進行解題也未嘗不可,但是從鍛煉學生思維能力的角度出發,教師可以在立足常規解法的基礎上,引導學生進行其他方面解題思路的探索。如從巧取特值的角度出發,把其中的一個未知數設為0,則可以暫時隱去這個未知數,而就另一個未知數的式子來分解因式,達到化二元為一元的目的。

解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。當把兩次分解的一次項的系數1、1;-2、4。可知,1×4+(-2)×1正好等於原式中xy項的系數。因此,綜合起來有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

其實,用特殊值法,也叫取零法。這種方法在因式分解中可以發揮很大的作用,幫助學生找到其他的解題思路。一般來說其步驟是:A、把多項式中的一個字母設為0所得的結果分解因式,B、把多項中的另一個字母設為0所得的結果分解因式,C、把上兩步分解的結果綜合起來,得出原多項式的分解結果。但要注意:兩次分解的一次因式的常數項必須相等,如本題中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否則,在綜合這兩步的結果時就無所適從了。

(4)巧妙轉換,過渡求解法

在解數學題時,即要對已知的條件進行全面分析,還要善於將題目中的隱性條件挖掘出來,將數學中各知識之間的聯系巧妙的運用起來,用全面、全新的視角來解決問題。

例如:已知:AB為半圓的直徑,其長度為30 cm,點C、D是該半圓的三等分點,求弦AC、AD與弧CD所圍成的圖形的面積。

本題需要解出的是一個不規則圖形的面積,可能大多數同學的思維就是將CD連結起來,將其轉變為一個角形和弓形,兩者面積之和就為該題需要解決的問題。這時,教師就要引導學生學會對半徑這一已知條件加以利用,幫助其將另外兩條OC、OD輔助線連結起來,將題目要求解的不規則圖形的面積,轉化成求扇形OCD的面積,這樣該題的解題思維就能一目瞭然了。

綜上所述,初中數學解題存在很強的靈活性。有的數學題不只一種解法,而有多種解法,有的數學題用常規方法解決不了,要用特殊方法。因此,解數學題要注意它的靈活性和技巧性。解題技巧在升學考試中至關重要,不能忽視。初中數學教師要注意對解題技巧的鑽研,並鼓勵學生發散思維,尋找解題技巧,提高解題效率,增強學習數學的能力。

猜你喜歡:

1. 初中數學規律題公式

2. 初中數學學習方法與技巧

3. 關於初中數學的學習方法有哪些

4. 初一數學解題技巧

5. 初中數學學習方法的六大要點

❻ 做初中數學題的技巧方法

大題是高考數學科目的重要組成部分,也是比分佔得很重的一部分,考生需要掌握解題技巧,才能正確答題,那麼接下來給大家分享一些關於做初中數學題的技巧 方法 ,希望對大家有所幫助。

做初中數學題要分類討論題

分類討論在數學題中經常以最後壓軸題的方式出現,以下幾點是需要大家注意分類討論的:

1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據圖形的特殊性質,找准討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最後要綜合。

2、討論點的位置一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。

3、圖形的對應關系多涉及到三角形的全等或相似問題,對其中可能出現的有關角、邊的可能對應情況加以分類討論。

4、代數式變形中如果有絕對值、平方時,裡面的數開出來要注意正負號的取捨。

5、考查點的取值情況或范圍。這部分多是考查自變數的取值范圍的分類,解題中應十分注意性質、定理的使用條件及范圍。

6、函數題目中如果說函數圖象與坐標軸有交點,那麼一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。

7、由動點問題引出的函數關系,當運動方式改變後(比如從一條線段移動到另一條線段)時,所寫的函數應該進行分段討論。

值得注意的是:在列出所有需要討論的可能性之後,要仔細審查是否每種可能性都會存在,是否有需要捨去的。

最常見的就是一元二次方程如果有兩個不等實根,那麼我們就要看看是不是這兩個根都能保留。

做初中數學題四個秘訣

切入點一:做不出、找相似,有相似、用相似

壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。

切入點二:構造定理所需的圖形或基本圖形

在解決問題的過程中,有時添加輔助線是必不可少的,幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。

切入點三:緊扣不變數

在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。

切入點四:在題目中尋找多解的信息

圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題。

其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。

做初中數學題答題技巧

1、定位準確防止 「撿芝麻丟西瓜」

在心中一定要給壓軸題或幾個「難點」一個時間上的限制,如果超過你設置的上限,必須要停止,回頭認真檢查前面的題,盡量要保證選擇、填空萬無一失,前面的解答題盡可能的檢查一遍。

2、解數學壓軸題做一問是一問

第一問對絕大多數同學來說,不是問題;如果第一小問不會解,切忌不可輕易放棄第二小問。

過程會多少寫多少,因為數學解答題是按步驟給分的,字跡要工整,布局要合理;

盡量多用幾何知識,少用代數計算,盡量用三角函數,少在直角三角形中使用相似三角形的性質。

做初中數學題壓軸題技巧

縱觀全國各地的中考數學試卷,數學綜合題關鍵是第22題和23題,我們不妨把它分為函數型綜合題和幾何型綜合題。

(一)函數型綜合題

是先給定直角坐標系和幾何圖形,求(已知)函數的解析式(即在求解前已知函數的類型),然後進行圖形的研究,求點的坐標或研究圖形的某些性質。

初中已知函數有:

①一次函數(包括正比例函數)和常值函數,它們所對應的圖像是直線;

②反比例函數,它所對應的圖像是雙曲線;

③二次函數,它所對應的圖像是拋物線。求已知函數的解析式主要方法是待定系數法,關鍵是求點的坐標,而求點的坐標基本方法是幾何法(圖形法)和代數法(解析法)。

(二)幾何型綜合題

先給定幾何圖形,根據已知條件進行計算,然後有動點(或動線段)運動,對應產生線段、面積等的變化。

求對應的(未知)函數的解析式(即在沒有求出之前不知道函數解析式的形式是什麼)和求函數的定義域,最後根據所求的函數關系進行探索研究,一般有:

在什麼條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等;

探索兩個三角形滿足什麼條件相似等;

探究線段之間的位置關系等;

探索麵積之間滿足一定關系求x的值等和直線(圓)與圓的相切時求自變數的值等。

求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),變形寫成y=f(x)的形式。

一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變數的方程,然後求出第三個變數和x之間的函數關系式,代入消去第三個變數,得到y=f(x)的形式),當然還有參數法,這個已超出初中數學教學要求。

找等量關系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據解析式求解。

而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。

在解數學綜合題時我們要做到:數形結合記心頭,大題小作來轉化,潛在條件不能忘,化動為靜多畫圖,分類討論要嚴密,方程函數是工具,計算推理要嚴謹,創新品質得提高。


做初中數學題的技巧方法相關 文章 :

★ 初中數學解題技巧與方法

★ 初中數學題中的小技巧整理

★ 初中數學學習方法以及技巧

★ 做數學選擇題的十種技巧

★ 初中數學學習方法總結,數學的六大方法技巧!

★ 初中數學解題方法大匯總

★ 初中數學題中的小技巧

★ 初中數學里常用的十種經典解題方法

★ 做題技巧數學初中解題方法總結

❼ 初中數學應用題解題方法技巧 這些步驟不能錯過

數學的解題技巧是很關鍵的, 下面我就大家整理一下初中數學應用題解題方法技巧,僅供參考。

排除選項法

選擇題因其答案是四選一,必然只有一個正確答案,那麼我們就可以採用排除法,從四個選項中排除掉易於判斷是錯誤的答案,那麼留下的一個自然就是正確的答案。

直接求解法

有些選擇題本身就是由一些填空題、判斷題、 解答題 改編而來的,因此往往可採用直接法,直接由從題目的條件出發,通過正確的運算或推理,直接求得結論,再與選擇項對照來確定選擇項。我們在做解答題時大部分都是採用這種方法。

無論哪種類型,其解題步驟一般都可具體分為以下幾步:

(一)快速閱讀,把握大意

在閱讀時不僅要特別留心短文中的事件倩景、具體數據、關鍵語句等細節,還要注意問題的提出方式。據此估計是我們平常練習時的哪種類型,會涉及到哪些知識,一般是如何解決的,在頭腦中建立初步印象。

(二)仔細閱讀,提煉信息

在閱讀過程中不僅要注意各個關鍵數據,還要注意各數據的內在聯系、標明單位,特別是一些特殊條件(如附加公式),以簡明的方式列出各量的關系,提煉信息,讀「薄」題目,同時還要能回到原題中去。

(三)總結信息,建立數模

根據前面提煉的信息分析,通過文中關鍵詞、句的提示作用,選用恰當的 數學 模型,例如由「大於、超過、不足……」等聯想到建立不等式,由「恰好……,等於……」聯想到建立方程,由「求哪種方案更經濟……」聯想到運用分類討論方法解決問題,由「求出……和……的函數關系式或求最大值(最小值)」聯想到建立函數關系,將題中的各種己知量用數學符號准確地反映出其內在聯系。

以上就是我為大家整理的初中數學應用題解題方法技巧。

❽ 初中數學解題方法與技巧

初中數學解題方法與技巧如下:

每個幾何定理都有與它相對應的幾何圖形,我們 把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」!這樣可防止亂添線,添輔助線也有規律可循。

復合應用題解題思路:

1、理解題意,就是弄清應用題中的已知條件和要求問題。

2、分析數量關系,就是分析已知數量與未知數數量,已知數量與未知數數量間的關系,找到解題途徑,確定先算什麼,再算什麼,最好算什麼。

3、列式解答,就是根據分析,列出算式並計算出來。

4、驗算並給出答案,就是檢驗解答過程中是否合理,結果是否正確,與原題的條件是否相符,最後寫出答案。

❾ 初中數學解題的幾種思路

隨著對數學對象的研究的深入發展,數學的解題方法需要不斷豐富和完善。數學教師鑽研習題、精通解題方法,能夠進一步促進教師熟練地掌握中學數學教材,夯實解題的基本功,掌握解題技巧,積累豐富教學經驗,提高業務水平和教學能力。本文介紹的幾種解題方法,均是初中數學中最常用的,有些方法甚至是教學大綱明確要求掌握的。
隨著社會科技的高速進步,數學學科的不斷發展,以及對數學對象的深入研究,初中數學的難度越來越大,給學生們帶來無形的學習壓力。數學題目由於難度不斷增加,僅僅靠用傳統的題海戰術來提高解題能力的做法難以收到良好的效果。所以,在數學教學中加深對解題方法的探討,使教師和學生們共同掌握規律性的方法,得到多數人的認可,這也是未來數學教學改革的方向之一。因此,本文通過列舉幾種常見的初中數學解題方法,給予同學們解題思路的指引,以達到掌握解題規律,緩解學習壓力以及提高學習效率的目的。
1 配方解題法
將一個式子或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。通常用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化筒根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2 換元解題法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、 變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。換元的方法有:局部換元、三角換元、均值換元等。換元的種類有:等參量換元、非等量換元。
3 待定系數解題法
它是中學數學中的一種比較常用的方法。有些時候通過題干就能確定出結果含有某種待定的系數,那麼可以通過題目的條件來列出關於待定系數的等式,找出其中的某種關系,從而來解決看似比較困哪的題目。
4 判別式法解題法
可以利用方程式ax2+bx+c=0中△=b2―4ac的定理,它的用處不僅可以用來斷定根的性質,而且對於代數式變形、求解方程組、不等式求解、幾何圖形分析更是一種解題方法。韋達定理最基本的用途在於根據一根求解另一個根或者根據兩個數的和與積,分別求出這兩個數。另外,利用判別式求出方程根的對稱函數以及判斷根的符號,甚者解答二次函數等復雜問題。判別式法應用面廣泛,運用靈活多變,是必須掌握的有效方法之一。
5 面積解題法
在平面幾何版塊中,根據幾何固定的面積公式推導與面積計算相關的性質,利用這種性質和關系證明或者計算面積的方法稱為面積法,利用面積法往往能收到事半功倍的效果。幾何題目中已知量和未知量都可以通過面積公式充分聯系起來,並計算出所需要求證的結果。面積解題法的便捷之處在於善於利用面積法來分析幾何元素間的聯系,適當的時候只要稍添置輔助線就能分析之間的數量關系。
6 反證解題法
反證解題法與正面解題的思路不同之處在於方法預先提出與命題結果截然相反的假設。下一步根據這個假設為起點,按照邏輯層層推理,最後推導出矛盾,以此斷定該假設為假命題,從反面肯定原命題為真命題。反證解題法有兩種,一類為歸謬反證法,另外一類為窮舉反證法。反證法命題證明一般過程為:提出假設;進行歸謬;求出結論。
提出反面假設是該方法的第一步,在做出假設之前,需要熟悉一些反設術語具體像:是與不是,存在或者不存在,是否平行,垂直與否,等於或是不等於,小於還是大於,至少有n個與至多有(n―1)個等等。其中反證解題法的關鍵是歸謬,雖然推出矛盾的過程是靈活多變的,但以反面假設為依據是基礎,否則推導過程將無法進行。通常導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾、與反設矛盾、自相矛盾。
7 其他解題法
①直接推演法:根據題目給定的條件為出發點,把所學的概念、公式、定理帶入題目之中進行推理或運算,最後推導結論,這是解題過程中的傳統方法,我們把這種解法叫做直接推演法。
②答案驗演算法:利用題目尋找合適的驗證條件,再根據下一步的驗證,試圖求出正確答案,同時也可以將提供的參考答案代入題目中進行驗證驗算,確定哪一個答案是正確的,這種方法叫做驗證法(也稱代人法)。這種方法常常運用於定量命題題目之中。
③數字圖形元素法:元素法通常把數字又或者圖形是代入題設條件或結論中去,從而獲得解答。這是特殊元素法的典型特點。
④排除法:由於選擇題的正確答案通常都是唯一的,教師引導學生根據數學知識或推理、演算,排除錯誤的選項,再把其餘的答案進行二次篩選,最終選出正確結論,這種方法的叫排除、篩選法。
⑤作圖法:依據已知的條件,畫出圖形,藉助圖形形象具體的特點把抽象的命題簡單化,以圖象的性質、特點來判斷,做出正確的選擇。這稱為圖解法。圖解法通常應用於選擇題或者是應用題。
⑥分析法:直接按照題目給予的條件和結論,按照邏輯順序一步一步作詳盡的分析、歸納和判斷,繼而不斷計算和推導正確答案,這一類方法稱為分析法。
8 結語
數學學科是學習其他理工科課程的前提和基礎,對學生們以後的工作和生活產生深遠影響。靈活有效的數學解題方法,往往能夠起到事半功倍的作用。教師在數學教學過程中,要善於剖析課程內容的重點和難點,探索不同種途徑構建適合學生的解題方法,從而不斷培養學生的數學思維以及解題能力。

❿ 初中數學解題思路和方法

初中階段學生數學學習成績兩極分化非常嚴重,學習差的學生占的比例較大,如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。那麼有哪些解題思路可以幫助初中數學提高得分呢?

一、如何獲得數學解題思路

解題思路的獲得,一般要經歷三個步驟:1.從理解題意中提取有用的信息,如數式特點,圖形結構特徵等;2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。

數學的表達,有3種方式:1.文字語言,即用漢字表達的內容;2.圖形語言,如幾何的圖形,函數的圖象;3.符號語言,即用數學符號表達的內容,比如AB∥CD。

在初中學段中,不僅要學好數學知識,同時也要注意數學思想方法的學習,掌握好思想和方法,對數學的學習將會起到事半功倍的良好效果。

其中整體與分類、類比與聯想、轉化與化歸和數形結合等不僅僅是學好數學的重要思想,同時對您今後的生活也必將起重要的作用。

先來看轉化思想:

我們知道任何事物都在不斷的運動,也就是轉化和變化。

在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以後再去解決。

體現在數學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。

如方程的學習中,一元一次方程是學習方程的基礎,那麼在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,

轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。

把未知轉化為已知,把復雜轉化為簡單。

同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。

在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。

所以,在數學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。

二、初中數學學生必備的解題理念

1.如果把解題比做打仗,那麼解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。

2.數學家存在的主要理由就是解決問題。

因此,數學的真正的組成部分是問題和解答。

“問題是數學的心臟”。

3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。

問題就是矛盾。

對於學生而言,問題有三個特徵:

(1)接受性:學生願意解決並且具有解決它的知識基礎和能力基礎。

(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對於教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

(1)問題解決是心理活動。

面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

(2)問題解決是一個探究過程。

把“問題解決”定義為“將先前已獲得的知識用於新的、不熟悉的情境的過程”。

這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

(3)問題解決是一個學習目的。

“學習數學的主要目的在於問題解決”。

因而,學習怎樣解決問題就成為學習數學的根本原因。

此時,問題解決就獨立於特殊的問題,獨立於一般過程或方法,也獨立於數學的具體內容。

(4)問題解決是一種生存能力。

重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界裡,學習生存的本領。

6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。

其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。

第三個表現是,多研究“怎樣解”,較少問“為什麼這樣解”。

在這些誤區里,“解題而不立法、作答而不立論”。

7.人的思維依賴於必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。

豐富的知識並加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。

解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

8.熟練掌握數學基礎知識的體系。

對於中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。

還應掌握中學數學競賽涉及的基礎理論

深刻理解數學概念、准確掌握數學定理、公式和法則。

熟悉基本規則和常用的方法,不斷積累數學技巧。

9.數學的本質活動是思維。

思維的對象是概念,思維的方式是邏輯。

當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。

出現“相容”時,產生新結果,且被原概念吸收,並發展成新概念;當出現“不容”時,則產生了所謂的問題。

這時,思維出現迂迴,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。

至此,也產生新的結果,也被原思維吸收。

這就是一個思維活動的全過程。

10.解題能力,表現於發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。

其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想像能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。

其基本要求包括:

(1)掌握解題的科學程序;

(2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

(3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;

(4)具有敏銳的直覺。

應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,並非對每一個數學細節都洞察無遺,並非總能藉助於“三段論”的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:

11.解題具有實踐性與探索性的特徵,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。

12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。

成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。

成功經驗所獲得的有序組合,就好像建築上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。

教育學生解題是一種意志教育。

當學生求解那些對他來說並不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現後如何全力以赴,直撲問題的核心或主幹;當一旦突破關卡,如何去佔領問題的至高點,並冷靜地府視全局,從而得到問題的完善解決。

如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。

14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。

如果教師掩瞞了解題中的曲折,自己在講台裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。

這樣的教師越高明,學生越自卑。

三、淺議初中生數學學習差的原因

一、造成分化的原因

1、被動學習。

許多同學進初中入後,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。

表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”。

2、學不得法。

老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。

而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。

也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3、不重視基礎。

一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。

到正規作業或考試中不是演算出錯就是中途“卡殼”。

4、思維方式和學習方法不適應數學學習要求。

初二階段是數學學習分化最明顯的階段。

一個重要原因是初中階段數學課程對學生抽象邏輯思維能力要求有了明顯提高。

而初二學生正處於由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思維能力發展快一些,有的則慢一些,因此表現出數學學習接受能力的差異。

除了年齡特徵因素以外,更重要的是教師沒有很好地根據學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發展,提高學習能力和學習適應性。

二、減少學習分化的教學對策

1、培養學生學習數學的興趣興趣是推動學生學習的動力,學生如果能在學習數學中產生興趣,就會形成較強的求知慾,就能積極主動地學習。

培養學生數學學習興趣的途徑很多,如讓學生積極參與教學活動,並讓其體驗到成功的.愉悅;創設一個適度的學習競賽環境;發揮趣味數學的作用;提高教師自身的教學藝術等等。

2、教會學生學習

(1)加強學法指導,培養良好學習習慣反復使用的方法將變成人們的習慣行為。

什麼是良好的學習習慣?我向學生做了如下具體解釋,它包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

(2)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。

閱讀全文

與初中數學問題方法有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017