① 考研用的高數三 主要有什麼內容
高等數學 線性代數 概率論和數理統計
數三」和」數四」的區別
有一個很大的區別就是說學模式的問題,數學三的要求比較高,數學四的概念考察要比數三難一些,還有一點就是數三和數四復習上,微積分數三高一些。
區分四份試卷的側重點
不同專業考生所須進行考試的數學試卷類型不同,因此區分不同試卷的側重點,進行針對性復習很有必要。
清華大學數學系的劉坤林教授認為,考研數學4份試卷的最大不同表現在:數一、數二屬於理工類,數三、數四屬於經濟類。
報考尖端工程或是在未來研究中需要較多運用數學的考生需要考數一,比如報考計算機、信息、力學、航天等專業的考生。報考專業屬於工程類並在將來學習中對數學要求不是特別高的考生需要考數二,如城建等專業。報考專業屬於經濟類、工商類的考生則需要考數三、數四。
一些經濟類專業的考生認為,數學考研試卷中數三、數四隻考經濟數學。"其實不然。數三、數四考的還是高等數學。"劉坤林教授舉例說,經濟類專業考生的使用的數學試卷中,一個題目里可能會涉及一些含有經濟術語的題目,比如一個產品如何使成本最低,銷售產品如何使利潤最大。"但不要相信數三、數四是考經濟數學,拿一套經濟類叢書來看就行了。數學一、二、三、四都要按理工類專業要求復習,才會有好成績。"
陳文燈教授說,理工類數學試卷對高等數學考查的要求最高,其重點是高數解題分析。經濟類數學試卷,對線性代數、概率與數理統計要求高,考生應該把離散型二維隨機變數及其分布作為復習重點。
② 經濟數學三
看概率
③ 考研數學三包括什麼書
數學三包括:數學三常被稱為經濟數學,包含線代,概率,高數。適用學科有:1、管理學門類的農林經濟管理一級學科中對數學要求較高的二級學科。2、經濟學門類的應用經濟學一級學科中統計學、數量經濟學二級學科。3、管理學門類的工商管理一級學科中企業管理、技術經濟及管理二級學科。考研數學三比較好的參考書目是什麼?考研數學(數學三)公認教材及參考書:高等數學:同濟五版線性代數:同濟六版概率論與數理統計:浙大三版推薦資料:1、 李永樂考研數學3--數學復習全書+習題全解(經濟類)。2、李永樂《經典400題》。3、《李永樂考研數學歷年試題解析(數學三)真題》。考研數學復習規劃:課本+復習指導書+習題集+模擬題+真題。復習資料來說:李永樂的不錯,注重基礎;陳文燈的要難一些。經濟類一般都用李永樂的(經濟類數學重基礎不重難度),基礎好就可以考慮下陳文燈的書。李永樂的線性代數很不錯。陳文燈的高等數學很不錯。
④ 經濟數學包括什麼
經濟數學是高等數學的一類,分為微積分、線性代數、概率論與數理統計。經濟數學培養既具有扎實的數學理論基礎又具有經濟理論基礎,且具有較高外語和計算機應用能力,能在金融證券、投資、保險、統計等經濟部門和政府部門從事經濟分析、經濟建模、系統設計工作的經濟數學復合型人才。 經濟數學是高等職業技術院校經濟和管理類專業的核心課程之一。該課程不僅為後繼課程提供必備的數學工具,而且是培養經濟管理類大學生數學素養和理性思維能力的最重要途徑。
學生應系統學習和掌握數學和應用數學的基礎理論和基本方法,接受數學模型、計算機軟體方面的基本訓練,具有較好的科學素養;系統掌握經濟學、管理學的基礎理論和基礎知識;熟練掌握一門外語,具有較強的外語閱讀能力和相當的外語聽、說、寫、譯能力,能利用外語獲得專業信息,通過國家大學外語四級水平測試;具有較強的計算機應用能力,能夠利用現代信息技術收集數據和查詢資料;能夠熟練運用數學軟體和通過數學建模分析、解決實際問題。
經濟數學主要課程設有數學分析、高等代數、概率論與數理統計、復變函數、實變函數、程序設計、西方經濟學、數學模型、計量經濟學、金融經濟學、金融投資數量分析、風險管理、經濟預測與決策、信息系統分析與設計、大系統分析等。該專業方向的學生修滿規定的學分,並達到學位授予要求的,授予理學學士學位。
⑤ 什麼是303數學(三)包括哪些內容
10月19日 09:22 這和您報考學校專業的具體要求有關,數二不考線性代數、數三、數四屬於經濟數學。
1. 2005年數學考試大綱的修訂說明與評述
(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學一、數學二、數學三和數學四。
(2) 數學一、二試卷高等數學部分,「函數、極限、連續」的考試要求的第4條增加「了解初等函數的概念」的要求。
原為「掌握基本初等函數的性質及其圖形」。變為「掌握基本初等函數的性質及其圖形,了解初等函數的概念」。
評述:進一步強調基礎知識點。
(3)
數學一試卷高等數學部分,「多元函數微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函數微積分學」的考試要求的第3條,將原來的「會用隱函數的求志法則」改為「了解隱函數存在定理,會求多元隱函數的偏導數」。
評述:進一步強調基礎知識點與概念理解的重要性。
(4) 數學三、四試卷高等數學部分,「函數、極限、連續」的考試要求的第3條,將「理解反函數、隱函數的概念」改為「了解反函數、隱函數的概念」,
原為「理解復合函數、反函數、隱函數和分段函數的概念」。變為「理解復合函數及分段函數的概念,了解反函數及隱函數的概念」。
評述:進一步強調基礎知識點。
「一元函數微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。
原為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。
變為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」
評述:進一步強調基礎知識點,進一步提升對考生能力的要求。
(5)
數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。
原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。
評述:進一步提升對考生能力的要求。
(6) 對數學一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規范和統一。
(7) 對數學一、二試卷的樣卷進行了修訂。
(8)
對數學一、二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規范和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。
2.2005年考研數學特點
2005考研數學試卷將進一步加大對考生掌握數學基礎知識的准確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2004年的水平。
2004年數學試題是近5年以來較容易也是最基本的一套試題。
2005年大綱維持2004年要求基本不變。只是進一步加強了對基礎性知識點的重視與規范化要求。如:一元微分學中:增加了「接初等函數的概念准確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「了解隱函數存在定理,會求多元隱函數的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。准確而全面的概念理解與過硬的基本計算能力,將是2005年考生取勝的關鍵。加強知識的基礎性、系統綜合性與交叉性的訓練,努力提升對知識的洞察力,以不變應萬變,排除誤導,是我們的建議。
關於2005考研試題的特點與結構,有以下幾點:
(1)試卷分值問題
從2003年開始,教育部考試中心對數學試卷的分數設定為150分,這反映了國家對人才的數學素質與能力的重視,但是數學試卷的題目容量並未增加,而是每一題目的賦分值均有增加,比如選擇與填空題(共13個小題)由原來3分提為4分。對每一個考生來講,在數學上下的功夫,其價值提高了。2005年數學試卷的分值維持不變。
(2)試卷結構問題
2005年數學試卷一、二、三、四結構相同,均為23題。其中選擇與填空題約佔40%(共14小題56分),其餘為解答題。
試卷一:微積分約60%,代數約20%,概率統計約20%;
試卷二:微積分約80%(要求多元微積分學,到二重積分為止),
代數約20%(要求到特徵值與特徵向量為止);
試卷三:微積分約50%(不含曲線曲面積分與三重積分,以及場論),
代數約25%(要求到二次型為止,同試卷一),概率統計約25%;
試卷四:微積分約50%(不含曲線曲面積分與三重積分,以及場論),
代數約25%(要求到特徵值與特徵向量為止),概率論約25%(不含統計);
(3)2004閱卷基本情況
初步估計,北京地區平均70分左右,微積分,線性代數與概率統計題目相對都較基本,最低調檔限為90分以上。其中以概率統計題目答卷情況最好,微積分與線性代數答卷得分較往年有提高。
(4)考生的普遍基本狀況
普遍的基本狀況是:全國現行的大學本科數學與英語的教學水準與國家考研的實際要求相差甚遠。這一情況的原因不在於考生本身。
面對考研,數學考試的特點是全面考察學生對基礎知識點理解的准,我們的建議是:加強對基礎知識理解的准確性、全面性,完整性與系統性,提升對基本知識點交叉綜合運用的能力。為確保這樣的教學效果,清華考研輔導基礎班的數學輔導課,一般要保持120-160學時,正是這樣的基礎性班教學,才保證了廣大學員大幅度提升對數學知識的洞察力,以不變應萬變,在考場上取得技壓群雄的良好成績。
3.關於對基礎知識點理解的准確性、完整性與系統性
對基礎知識點的理解,首先要作到准確性,准確性沒有作到,一切都談不上。有了准確性,才能進一步有全面性。對基礎知識點理解的的准確與不準確,或不夠准確,會極大的影響考試成績。而對准確性與全面性的問題,正是大多數考生的不足之處,需要認真補課。
完全基礎性題目一般佔60分以上(滿分150分),並且,基礎性在綜合題目中也佔有重要的分量。所謂基礎知識,包括初等函數的初等性質,構造導數定義的極限模式及其變形,極限存在的命題形式及命題屬性(充分的?必要的?還是充要的?),極限運演算法則,反函數與隱函數的概念與性質,線性微分方程解的概念,一階線性微分方程解的公式,齊次與非齊次線性微分方程解的結構,矩陣的初等變換與秩的概念,向量組的線性相關與無關,向量組的秩與線性方程組解結構之間的關系,矩陣的行初等變換與求解非齊次線性方程組解的關系,概率的事件運算,五個古典概率的基本公式,分布率,分布密度與分布函數的性質及其相互之間關系,數字特徵的定義與基本運算公式,簡單隨機樣本及其數字特徵,等等。
基礎性知識的失誤往往導致對一個綜合題目的切入點錯誤,最後造成的是全局性錯誤。同時還應注意基本概念的背景和各個知識點的相互關系,不宜多作難題。對基本題目涉及的方法與技巧多做總結與分析,力爭做到舉一反三,以一當十,這樣的訓練會使你遇到個別難題時容易找到切入點與思路。
參考文獻:清華大學數學科學系責任教授 清華大學考研輔導班主講 劉坤林
⑥ 考研數學三考什麼內容,請具體點!與數學一的區別!謝謝
建議到到網上下載考研的數學大綱來看即可,如有需要,也可聯系我(剛有朋友考過哦,可以發給你)。
數學一:考試內容包含線代,高數,概率。適用的學科為:
1.工學門類的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、計算機科學與技術、土木工程、水利工程、測繪科學與技術、交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等一級學科中所有的二級學科、專業.
2.工學門類的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業.
3.管理學門類中的管理科學與工程一級學科
按此劃分,絕大多數院校的計算機專業都會選擇考數學一,這也是從事計算機所必須的最低數學功底。
數學三:常被稱為經濟數學,考試內容包含線代,概率,高數。適用學科為:
1.經濟學門類的應用經濟學一級學科中統計學、數量經濟學二級學科、專業.
2.管理學門類的工商管理一級學科中企業管理、技術經濟及管理二級學科、專業.
3.管理學門類的農林經濟管理一級學科中對數學要求較高的二級學科、專業
09年考研國家取消了數學四,數三和數四合並為數三,數一是工科類考試要選擇的,數二是材料學之類的,剩下的就是數三了,比如管理類 經濟類等,在三個等級中 數一是最難的,非數學專業的考試對這個都比較頭疼,數二相對比較簡單 但是考數二專業比較少,我就給你分析數三好了,數三比數一隻是相對簡單,比如傅里葉級數就不考,還有概率整個都不考,具體你可以去看看數三的參考書。
希望能幫到你。
⑦ 考研數學3考什麼
考研數學三:常被稱為經濟數學,考試內容包含線代,概率,高數。適用學科為: 1.經濟學門類的應用經濟學一級學科中統計學、數量經濟學二級學科、專業. 2.管理學門類的工商管理一級學科中企業管理、技術經濟及管理二級學科、專業. 3.管理學門類的農林經濟管理一級學科中對數學要求較高的二級學科、專業 09年考研國家取消了數學四,數三和數四合並為數三,數一是工科類考試要選擇的,數二是材料學之類的,剩下的就是數三了,比如管理類 經濟類等,在三個等級中 數一是最難的,非數學專業的考試對這個都比較頭疼,數二相對比較簡單 但是考數二專業比較少,我就給你分析數三好了,數三比數一隻是相對簡單,比如傅里葉級數就不考,還有概率整個都不考,具體你可以去看看數三的參考書。 2012考研英語紅寶書: Getting up is an everyday . [A] happening [B] occurrence [C] incident 答:occurrence 可指意外或計劃中發生的事件、事情,也可指普通家庭中的事情。
⑧ 考研的數學三 經濟一 經濟二是指什麼啊
考研數學中數幾指的是考試范圍的不同,數一最大,幾乎是全部內容,數二不考概率論,數三就是經濟類的,大綱如下:
微 積 分
一、 函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則 單調有界准則和夾逼准則 兩個重要極限:
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1. 理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2. 了解函數的有界性、單調性、周期性和奇偶性.
3. 理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4. 掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5. 了解數列極限和函數極限(包括左極限與右極限)的概念.
6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小量的概念和基本性質,掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質.
二、一元函數微分學
考試內容
導數和微分的概念 導數的幾何意義和經濟經意義 函數的可導性與連續性之間的關系 平面曲線的切線和法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數和隱函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L』Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值與最小值
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數,會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念、導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用..
8.會用導數判斷函數圖形凹凸性(註:在區間 內,設 具有二階導數。當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線,
9.會描繪簡單函數的圖形.
三、一元函數積分學
考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用
考試要求
1. 理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法與分部積分法.
2. 了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓-萊布尼茨公式以及定積分的換元積分法和分部積分法.
3. 會利用定積分計算平面圖形的面積、旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.
4. 了解反常積分的概念,會計算反常積分.
四、多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數的偏導數的概念與計算 多元復合函數的求導法與隱函數的求導法 二階偏導數 全微分 多元函數的極值和條件極值、最大值和最小值 二重積分的概念、基本性質和計算 無界區域上簡單的反常二重積分.
考試要求
1. 了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連的概念,了解有界閉區域上二元連續函數的性質.
3. 了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分、了解隱函數存在定理,會求多元隱函數的偏導數.
4. 了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題.
5. 了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)了解無界區域上較簡單的反常二重積分並會計算.
五、無窮級數
考試內容
常數項級數的收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與p級數及其收斂性 正項級數收斂性的判別法 任意項級數的絕對收斂與條件收斂 交錯級數與萊布尼茨定理 冪級數及其收斂半徑、收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式
考試要求
1. 了解級數的收斂與發散、收斂級數的和的概念.
2. 掌握級數的基本性質及級數收斂的必要條件,掌握幾何級數及p級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法。
3. 了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.
4. 會求冪級數的收斂半徑、收斂區間及收斂域.
5. 了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數.
6. 了解 的麥克勞林(Maclaurin)展開式。
六、常微分方程與差分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程與差分方程的簡單應用
考試要求
1. 了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變數可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
3.會解二階常系數齊次線性微分方程.
4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式、指數函數、正弦函數、餘弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數線性差分方程的求解方法.
7.會用微分方程和差分方程求解簡單的經濟應用問題.
線性代數
一、行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質。
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。
二、矩陣
考試內容
矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義和性質。
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質。
3.理解逆矩陣的概念,掌握矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。
三、向量
考試內容
向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規范化方法
考試要求
1. 了解向量的概念,掌握向量的加法和數乘運演算法則。
2. 理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。
3. 理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩。
4. 理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系。
5. 了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法。
四、線性方程組
考試內容
線性方程組的克萊姆(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線性方程組(導出組)的解之間的關系 非齊次線性方程組的通解
考試要求
1. 會用克萊姆法則解線性方程組。
2. 掌握非齊次線性方程組有解和無解的判定方法。
3. 理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。
4. 理解非齊次線性方程組解的結構及通解概念。
5. 掌握用初等行變換求解線性方程組的方法。
五、矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣
考試要求
1. 理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2. 理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
3. 掌握實對稱矩陣的特徵值和特徵向量的性質。
六、二次型
考試內容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。
2. 了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形。
3. 理解正定二次型、正定矩陣的概念,並掌握其判別法。
概率論與數理統計
一、 隨機事件和概率
考試內容
隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。
二、 隨機變數及其分布
考試內容
隨機變數 隨機變數分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度 常見隨機變數的分布 隨機變數函數的分布
考試要求
1. 理解隨機變數的概念,理解分布函數
的概念及性質,會計算與隨機變數相聯系的事件的概率。
2. 理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布
、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用。
3. 掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4. 理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正
態分布 、指數分布及其應用,其中參數為 的指數分布 的概率密度為
5. 會求隨機變數函數的分布。
三、多維隨機變數及其分布
考試內容
多維隨機變數及其分布 二維離散型隨機變數的概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常用二維隨機變數的分布 兩個及兩個以上隨機變數簡單函數的分布
考試要求
1.理解多維隨機變數的分布函數的概念和性質。
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度,掌握二維隨機變數的邊緣分布和條件分布。
3. 理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系。
4. 掌握二維均勻分布和二維正態分布 ,理解其中參數的概率意義。
5. 會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布。
四、隨機變數的數字特徵
考試內容
隨機變數的數學期望(均值)、方差、標准差及其性質 隨機變數函數的數學期望 切比雪夫(Chebyshev)不等式 矩、協方差、相關系數及其性質
考試要求
1. 理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵。
2.會求隨機變數函數的數學期望.
3. 了解切比雪夫不等式。
五、大數定律和中心極限定理
考試內容
切比雪夫大數定律 伯努利(Bernoulli)大數定律 辛欽(Khinchine)大數定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律)。
2. 了解棣莫弗-拉普拉斯定理(二項分布以正態分布為極限分布)、列維-林德伯格定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率。
六、數理統計的基本概念
考試內容
總體 個體 簡單隨機樣本 統計量 經驗分布函數 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布
考試要求
1. 理解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產生 變數, 變數, 變數的典型模式;理解標准正態分布、 分布、 分布、 分布的上側 分位數,會查相應的數值表。
3. 掌握正態總體的樣本均值、樣本方差、樣本矩的抽樣分布。
4. 了解經驗分布函數的概念和性質。
試卷結構
(一)總分 試卷滿分為 150分
(二)內容比例 微積分 約56%
線性代數 約22%
概率論與數理統計 約22%
(三)題型比例 單項選擇題 8小題,每小題4分,共32分
填空題 6小題,每小題4分,共24分
解答題(包括證明題) 9小題,共94分
⑨ 考研數學經濟類數學三
考研所說的「高等數學三或四」與教材沒有關系,僅僅是內容覆蓋的范圍大小及深度有所不同。所以,如果你要買教材的話,只能「把線性代數,微積分,概率與數理統計的課本分開買」。同時,建議可以購買相關考研輔導教材,可以提綱挈領,有的放矢。
補充:數學三、數學四考高等數學、線性代數、概率論與統計部分(數學四不考數理統計)。更具體的考試內容,可以參考每年的《研究生考試數學考試大綱》
⑩ 經濟數學都是包括什麼 越詳細越好!~~~
經濟數學是高等數學的一類,分為微積分、線性代數、概率論與數理統計。 經濟數學培養既具有扎實的數學理論基礎又具有經濟理論基礎,且具有較高外語和計算機應用能力,能在金融證券、投資、保險、統計等經濟部門和政府部門從事經濟分析、經濟建模、系統設計工作的經濟數學復合型人才。 經濟數學是高等職業技術院校經濟和管理類專業的核心課程之一。該課程不僅為後繼課程提供必備的數學工具,而且是培養經濟管理類大學生數學素養和理性思維能力的最重要途徑。