① 初中數學中的關系分幾種
變數關系、圓與圓的關系、函數關系、位置關系、圓與線的關系、平行線和相交線、坐標、不等式組、三角形、分式、二次根式、勾股定理、平行四邊形、弧長、概率、統計、函數、三視圖。嗯。我記得初中大概就是學了這些了。
② 數學內容之間的關系有什麼
由點及面,環環相扣,層層疊加,既相互獨立又相互聯系。
③ 在數學中,什麼是關系式
關系常指二元關系,數學的基本概念之一,關系是在集合的基礎上定義的一個重要的概念,與集合的概念一樣,關系的概念在計算機科學中也是最基本的。
它主要反映元素之間的聯系和性質,在計算機科學中有重要的意義,如有限自動機和形式語言、編譯程序設計、信息檢索、數據結構以及演算法分析和程序設計的描述中經常出現。
任何一個不是自反的關系,未必是反自反的;反之,任何一個不是反自反的關系,未必是自反的,這就是說,存在既不是自反的也不是反自反的二元關系。
(3)數學關系有哪些擴展閱讀:
常用數學關系式
1、每份數×份數=總數,總數÷每份數=份數,總數÷份數=每份數。
2、1倍數×倍數=幾倍數,幾倍數÷1倍數=倍數,幾倍數÷倍數=1倍數。
3、速度×時間=路程,路程÷速度=時間,路程÷時間=速度。
4、單價×數量=總價,總價÷單價=數量,總價÷數量=單價。
5、工作效率×工作時間=工作總量,工作總量÷工作效率=工作時間,工作總量÷工作時間=工作效率 。
6、加數+加數=和,和-一個加數=另一個加數。
7、被減數-減數=差,被減數-差=減數,差+減數=被減數。
④ 數學關系有哪些
應該是這個吧,錯了請不要炒
1千米=1000米
1米=10分米
1分米=10厘米
(1米=100厘米)
1小時=60分鍾
1分鍾=60秒
1升=1000毫升
1元=10角
1角=10分
1平方千米=100公頃
1公頃=100平方米
1平方米=100平米分米
1平方分半=100平米厘米
⑤ 初一數學有哪些關系式
初一數學概念
實數:
—有理數與無理數統稱為實數.
有理數:
整數和分數統稱為有理數.
無理數:
無理數是指無限不循環小數.
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數.
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸.
相反數:
符號不同的兩個數互為相反數.
倒數:
乘積是1的兩個數互為倒數.
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值.一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0.
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
⑵減法法則:減去一個數,等於加上這個數的相反數.
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0.
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0.
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線.
數學第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角.鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角.
二、對頂角:是兩條直線相交形成的.兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」.
對頂角的性質:對頂角相等.
三、垂直
1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直.其中一條叫做另一條的垂線,它們的交點叫做垂足.記做a⊥b
垂直是相交的一種特殊情形.
2、垂線的性質:
①過一點有且只有一條直線與已知直線垂直;
②連接直線外一點與直線上各點的所有線段中,垂線段最短.
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離.
3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)
4、空間的垂直關系
四、平行線
1、 平行線:在同一平面內,不相交的兩條直線叫做平行線.記做a‖b
2、 「三線八角」:兩條直線被第三條直線所截形成的
① 同位角:「同方同位」即在兩條直線的上方或下方,在第三條直線的同一側.
② 內錯角:「之間兩側」即在兩條直線之間,在第三條直線的兩側.
③ 同旁內角「之間同旁」即在兩條直線之間,在第三條直線的同旁.
3、 平行公理:經過直線外一點,有且只有一條直線與這條直線平行
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行.
4、 平行線的判定方法
① 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行;
② 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行;
③ 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行;
④ 平行於同一條直線的兩條直線平行;
⑤ 垂直於同一條直線的兩條直線平行.
5、 平行線的性質:
①兩條平行線被第三條直線所截,同位角相等;
②兩條平行線被第三條直線所截,內錯角相等;
③兩條平行線被第三條直線所截,同旁內角互補.
6、 兩條平行線的距離:同時垂直於兩條平行線並且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離.
7、 命題:判斷一件事情的語句,叫做命題,由題設和結論兩部分組成.
五平移
1、平移:在平面內將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.
說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②「將一個圖形沿某個方向移動一定的距離」意味著「圖形上的每一點都沿著同一方向移動了相同的距離 」這也是判斷一種運動是否為平移的關鍵.③圖形平移的方向,不一定是水平的
2、平移的性質:經過平移,對應線段、對應角分別相等,對應點所連的線段平行且相等
⑥ 數學六個關系式有哪些
數學六個關系式有:
1、一個加數=和—另一個加數
2、被減數=差+減數
3、減數=被減數—差
4、一個因數=積÷另一個因數
5、被除數=商×除數
6、除數=被除數÷商
運算性質
被除數擴大(縮小)n倍,除數不變,商也相應的擴大(縮小)n倍。
除數擴大(縮小)n倍,被除數不變,商相應的縮小(擴大)n倍。
除法的性質:被除數連續除以兩個除數,等於除以這兩個除數之積。有時可以根據除法的性質來進行簡便運算。
例如:300÷25÷4=300÷(25×4)=300÷100=3。
⑦ 數學:什麼是關系式
關系式是表示兩種或多種物質之間「物質的量(單位:摩爾)」關系的一種簡化的式子。
例如:
加減乘除法各部分之間的關系:
1、加數+加數=和。和-一個加數=另一個加數。
2、被減數-減數=差。被減數-差=減數。差+減數=被減數。
3、因數×因數=積。積÷一個因數=另一個因數。
4、被除數÷除數=商。被除數÷商=除數。商×除數=被除數。
加減乘除對應說明如下:
1、加法是基本的四則運算之一,它是指將兩個或者兩個以上的數、量合起來,變成一個數、量的計算。表達加法的符號為加號「+」。進行加法時以加號將各項連接起來。
2、減法是四則運算之一,從一個數中減去另一個數的運算叫做減法;已知兩個加數的和與其中一個加數,求另一個加數的運算叫做減法。表示減法的符號是「-」,讀作減號。
3、乘法,是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
4、兩個數相除又叫做兩個數的比。若ab=c(b≠0),用積數c和因數b來求另一個因數a的運算就是除法,寫作c÷b,讀作c除以b(或b除c)。其中,c叫做被除數,b叫做除數,運算的結果a叫做商。
⑧ 數學包含關系符號有哪些
包含用數學符號為:⊆
集合的符號還包括一下幾種
∪(並集)、∩(交集)、∈(屬於)
其他數學符號
運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」
⑨ 常見的數學數量關系式有哪些
工作時間*工作效率=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
本金*利率=利息
單價*數量=總價
工效*時間=工作總量
單產量*數量=總產量
每份數*份數=總數 速度=時間*路程
本金*利率*時間=利息
植樹問題中的主要數量關系是:間隔數×每個間隔的米數=一共的米數;
鋸木頭問題的主要數量關系是:鋸的次數×鋸一次用的時間=一共要的時間;
爬樓梯問題中的數量關系式是:樓梯的級數÷每兩層樓之間樓梯的級數=樓梯的段數。
敲鍾問題的主要關系式是:等待的次數×等待一次用的時間=一共用的時間
成活率=成活棵數/總棵數
合格率=合格/總數
⑩ 數學研究的"關系"主要有哪些這些關系應滿足哪些條件
一個等式有兩個變數,如果一個變數在某個數集里取任意一個數,都能得到惟一的一個數,這個等式就是函數。前者是自變數,後者是因變數。