① 數學主題手抄報文字素材
數學主題手抄報文字素材
由於數學是「人們參加社會生活,從事生產勞動和學習、研究現 代科學技術必不可少的工具,它的內容、思想、方法和語言已廣 泛滲入自然科學和社會科學,成為現代文化的重要組成部分。」
因此對於我們每一個剛剛升入初中的同學來說,都希望自己能學 好數學。如何順利完成好小學到中學的過渡。學好初一代數,下 面向大家提一些建議和希望。
一、要不斷培養學習數學的興趣和求知慾望
許多同學在小學都曾有過這樣的感受,每當你認識了一個數學規 律,解決了一個較難的應用問題,成功的喜悅是無法用別的東西 來替代的,它激勵你的學習熱情和好奇心,越學越愛學。學習的 興趣和求知慾是要不斷地培養的,況且同學們剛剛邁進「數學王 國」的'大花園里,許多奧妙無窮的數學問題還等著你們去學習、 觀賞、研究。
二、要養成認真讀書,獨立思考的好習慣
過去有些同學認為:學習數學主要是靠上課聽老師講明白,而把 我們手中的數學課本僅僅當成做作業的「習題集」。這就有兩個 認識問題必須要解決。一是同學們要認識到,我們的教科書記載 了由數學工作者整理的、大家必須掌握的基礎知識,以及如何運 用這些知識解決問題等。因此,要想真正獲得知識,認真讀書、 培養自學能力是一條根本途徑。我們希望同學們在中學老師的指 導、幫助下,從過去不讀書、不會讀書轉變為愛讀書、學會讀 書,進而養成認真讀書的好習慣;二是同學們還要認識到,許多 數學問題不是單靠老師講明白的,主要是靠同學們自己想明白 的。孔子日:」學而不思則罔,思而不學則殆。」這句話極力精 闢地闡述了學習和思考的辯證關系,即要學而恩、又要思而學。
大家學習數學的過程主要是自己不斷深入思考的過程。我們希望 大家今後在上數學課時。無論老師講新課,還是復習、講評作業 練習,都要使自己的注意力高度集中,邊聽邊積極思考問題,捕 捉有用的信息,隨時抓住萌發出的靈感。對於沒弄明白的問題, 一定要及時、主動去解決它,直到弄懂為止。
在學習第一章《代數初步知識》時,你是否能通過看書給自己提 出如下的一些問題。想辦法解決它。例如:為什麼要用字母表示 數?什麼是代數式?列代數式的關鍵是什麼?怎樣用代數式表示 某種規律?等等。
另外,在做練習時,如遇到把兩數和與這兩數差的積的平方列成 代數式時,你是否搞清楚這其中有哪幾個不同的數量?如何用字 母表示它們,應該用哪些數學運算符號有序連接反映數量之間分 層次的內在聯系,從而使文學語言轉化為代數式語言,即 [(a+b) (a-b)]2。如果寫成為(a+b)(a-b)2那就不是 原來的意思了。
到了初一,與小學學數學的一個很大的不同是要學習許多數學概 念,特別是學第二章有理數。由於數學概念是我們進行判斷、推 理的依據,是解題的基礎,所以一定要准確地理解它們。雖然數 學概念往往比較抽象,但它又是從實際生活中的具體事例概括提 煉出來的,因此大家在學習數學概念(例如正數和負數、數軸、 數的絕對值等)時,要注意與生活、生產實際相結合,會從具體 的事例中歸納、慨括出該概念的本質,看書時要抓住概念定義中 的關鍵詞語,進行思考,理解它的內涵,這樣就能把課本讀 「精」,「鑽」進去,並在運用中逐步加深對數學概念的理解和 掌握。
我們相信,會有一大批同學,通過培養認真讀書的習慣,提高自 學能力;通過培養獨立思考的習慣,提高思維能力。
三、要始終抓住如何「從算術進展到代數」這個重要的基本課題
《初一代數》(上冊)的數學內容從整體上看主要是解決從算術 進展到代數這個重要的基本課題。我們認為主要體現在以下兩個 方面。一方面是「數集的擴充」,即引進負數,把原有的算術數 集合擴充到有理數集合;另一方面是解代數方程的原理和方法, 即從用字母表示數,到用「列方程」取代。
;② 升和毫升的手抄報內容
升和毫升是計量單位,
民間有一種以「升」為計量單位的方法,一升是一斗的十分之一,一升米就是2000克,也就是4市斤。過去人在沒有標準度量衡的基礎上,發明了這種以容量來測量稻穀的方法,還是很好用的。有很多文學作品中揭露了地主放高利貸採取了小升(斗)出,大升(斗)進的手段欺詐農民,反映了封建社會的剝削制度。
單位換算
1L=1000mL 1000毫升=1000立方厘米=1立方分米
1毫升=1西西(cc).
1毫升液態水=1立方厘米液態水
1毫升液態水在4攝氏度時的重量為1克。
1毫升=1立方厘米
oz即盎司(英語是Ounce,簡寫成oz),這里指液量盎司,為容量計量單位。英美單位制都有這一單位,略有不同,英制1盎司為28.41mL;美製1盎司為29.57mL。16盎司摺合1品脫(美製)。
最早是飲用不同的酒,選用不同的酒杯。杯的容量是最為重要的,歷史上用盎司作為酒的液量單位。美國不使用公制度量衡。一磅大約是454 克,相當於十六盎司。一磅約為一品脫(不到0.5升)水的重量,因此有這樣的俗語「一品脫一磅,世界就是這樣」。在美國度量衡中,一品脫包含十六盎司。在英制度量衡中,一品脫約合20盎司。
oz即盎司(英語是Ounce,簡寫成oz),這里指液量盎司,為容量計量單位。英美單位制都有這一單位,略有不同,英制1盎司為28.41mL;美製1盎司為29.57mL。16盎司摺合1品脫(美製)。
最早是飲用不同的酒,選用不同的酒杯。杯的容量是最為重要的,歷史上用盎司作為酒的液量單位。美國不使用公制度量衡。一磅大約是454 克,相當於十六盎司。一磅約為一品脫(不到0.5升)水的重量,因此有這樣的俗語「一品脫一磅,世界就是這樣」。在美國度量衡中,一品脫包含十六盎司。在英制度量衡中,一品脫約合20盎司。
③ 數學手抄報內容
你可以把乘法口訣表寫上去,在寫一些關於數學家的故事等,,還可以出些題目,或者趣味數學,也可以把數學家的資料寫上去。。。。
故事如,祖 沖 之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是 π的漸近分數。
還有些資料,,
華 羅 庚
華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。
1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。
華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。
④ 數學手抄報升和毫升的內容四年級
⑤ 小學數學手抄報的內容資料
你可以把乘法口訣表寫上去,在寫一些關於數學家的故事等,,還可以出些題目,或者趣味數學,也可以把數學家的資料寫上去。。。。
故事如,祖 沖 之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是 π的漸近分數。
還有些資料,,
華 羅 庚
華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。
1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。
華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
http://..com/q?ct=17&lm=0&tn=ikaslist&pn=0&rn=10&word=%CA%FD%D1%A7%CA%D6%B3%AD%B1%A8%D7%CA%C1%CF
⑥ 數學小報內容怎麼寫
一些趣味的數學知識有助於提升學生們學習數學的興趣,以下是相關手抄報內容,僅供閱讀參考!
數學小報內容怎麼寫(一)
在我們的概念中,「1「是一個最小的數字,它是整數數字的開始之數,是萬數之首,是的,「1」是萬數之首,地位也是最特殊的,下面就一起認識這個神奇的數字。
一、最小的數字。
古老而龐大的自然數家族,是由全體自然數1、2、3、4、5、6、7、8、9、10……集合在一起組成的。其中最小的是「1」,找不到最大的。如果你有興趣的話,可以找一找。
二、沒有最大的自然數。
也許你認為可以找到一個最大的自然數(n),但是,你立刻就會發現另一個自然數(n+1),它大於n。這就說明在自然數家族中永遠找不到最大的自然數。
三、「1」確實是自然數家族中最小的。
自然數是無限的,而「1」是自然數中最小的。有人提出異議,不同意「1」是最小的自然數,說「0」比「1」小,「0」應該是最小的自然數。這是不對的,因為自然數指的是正整數,「0」是唯一的非正非負的'整數,因而「0」不屬於自然數家族。「1」確實是自然數家族中最小的。可別小看了這個最小的「1」,它是自然數的單位,是自然數中的第一代,人類最先認識的是「1」,有了「1」,才能得到1、2、3、4……
給你講了萬數之首「1」的特殊地位,所以,你千萬別小看了它哦。
數學小報內容怎麼寫(二)
說起數學的作用,我們說上一天一夜也說不完,沒有數學,我們生活也很不方便。那麼,你知道數學除了日常生活中的簡單運算,還可以做什麼?能像警察那樣破案嗎?可以的,不信看看俠盜亞森羅賓是怎樣用數學破案的。
巴黎郊外有一座中世紀留下的古老城堡,其年代幾乎與著名的「巴黎聖母院」同樣久遠,因而成了旅遊觀光的勝地,吸引了來自世界各地的遊客。下面這則故事就是出自—位導游之口。古堡的頂層有一座塵封的鍾樓,裡面住著一個怪人,唯一的對外通道是個走起來嘎嘎響、陡峭異常的木質樓梯,大約有幾十級,但肯定不到一百級。
某日黃昏,怪人的四位互不相識的朋友阿列克賽、巴頓、克林、杜邦,幾乎在同一時間先後來訪。他們發現怪人已經被人殺害了,房間裡面看起來很恐怖。當下四人大驚失色,爭先恐後地拚命逃走。從臟亂不堪的狹窄樓梯(一次只能通過一人)跑下來,阿列克賽一步下2級台階,巴頓一步下3級台階,克林一步下4級台階,而杜邦的本事最大,竟然一步能下5級台階。
出事以後,俠盜亞森羅賓喬裝成一名體面的上流社會紳士,自告奮勇地前來偵破此案。他發現,同時印下四個人腳印的台階僅在最高處和最低處。為了追查兇手,腳印混亂了就不好辦,於是亞森羅賓特別重視只留有一個人腳印的台階。後來的結果充分證明他的看法是正確無誤的,最後終於抓獲兇手,把他繩之以法。
現在要問你的是,通向鍾樓的木樓梯上有多少級台階只印下了一個人(不管是誰的)的腳印?答案:
由於4的倍數肯定是2的倍數,所以克林的情況可以不必考慮,這就省掉了一個人,2,3,4,5的最小公倍數是60,而60又小於100,所以鍾樓的木樓梯共有60級台階。
阿列克賽的腳印落在第2,4,6,8,l0,12,…,58,60級台階上,但應排除2×3及其倍數的各級階梯;同理,還需要排除4的倍數的各級階梯和5的倍數的各級階梯。於是剩下第2,14,22,26,34,38,46,58共八級。其一般形式為2×p(其中p=1,以及除去2、3、5以外的素數)。巴頓的腳印落在第3,6,9,12,…,60級階梯上,但應排除混有別人腳印的第6,12,15,18,……級階梯,剩下第3,9,2l,27,33,39,51,57,共八級。
前面已經說過克林的情況可以不考慮了,最後再來看一下杜邦的情況。很明顯,只留下他一個人腳印的階梯是第5,25,35,55級,共四級。
所以,問題的答案是8+8+4=20級。