1. 高中數學的概念課有哪些
指數函數,冪函數,正弦函數,餘弦函數,正切函數,導函數
函數的單調性,奇偶性,周期性,反函數,等差等比數列
函數的零點
橢圓,雙曲線,拋物線,演算法框圖……
2. 初中數學內容的核心概念有哪些
在數學課程中,應當注重發展學生的數感、符號意識、空間觀念、幾何直觀、數據分析觀念、運算能力、推理能力和模型思想。為了適應時代發展對人才培養的需要,數學課程還要特別注重發展學生的應用意識和創新意識。
主要是指關於數與數量、數量關系、運算結果估計等方面的感悟。
建立數感有助於學生理解現實生活中數的意義,理解或表述具體情境中的數量關系。
主要是指能夠理解並且運用符號表示數、數量關系和變化規律;知道使用符號可以進行運算和推理,得到的結論具有一般性。
建立符號意識有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
主要是指根據物體特徵抽象出幾何圖形,根據幾何圖形想像出所描述的實際物體;
想像出物體的方位和相互之間的位置關系;
描述圖形的運動和變化;
依據語言的描述畫出圖形等。
主要是指利用圖形描述和分析問題。
藉助幾何直觀可以把復雜的數學問題變得簡明、形象,有助於探索解決問題的思路,預測結果。
幾何直觀可以幫助學生直觀地理解數學,在整個數學學習過程中都發揮著重要作用。
包括:了解在現實生活中有許多問題應當先做調查研究,收集數據,通過分析做出判斷,體會數據中蘊涵著信息;
了解對於同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法;
通過數據分析體驗隨機性
一方面對於同樣的事情每次收集到的數據可能不同,
另一方面只要有足夠的數據就可能從中發現規律。數據分析是統計的核心。
主要是指能夠根據法則和運算律正確地進行運算的能力。
培養運算能力有助於學生理解運算的算理,尋求合理簡潔的運算途徑解決問題。
推理能力的發展應貫穿於整個數學學習過程中。
推理是數學的基本思維方式,也是人們學習和生活中經常使用的思維方式。
推理一般包括合情推理和演繹推理,合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比等推斷某些結果;
演繹推理是從已有的事實(包括定義、公理、定理等)和確定的規則(包括運算的定義、法則、順序等)出發,按照邏輯推理的法則證明和計算。
在解決問題的過程中,兩種推理功能不同,相輔相成:合情推理用於探索思路,發現結論;演繹推理用於證明結論。
模型思想的建立是學生體會和理解數學與外部世界聯系的基本途徑。
建立和求解模型的過程包括:從現實生活或具體情境中抽象出數學問題,用數學符號建立方程、不等式、函數等表示數學問題中的數量關系和變化規律,求出結果並討論結果的意義。
這些內容的學習有助於學生初步形成模型思想,提高學習數學的興趣和應用意識。
有兩個方面的含義,
一方面有意識利用數學的概念、原理和方法解釋現實世界中的現象,解決現實世界中的問題;
另一方面,認識到現實生活中蘊涵著大量與數量和圖形有關的問題,這些問題可以抽象成數學問題,用數學的方法予以解決。
在整個數學教育的過程中都應該培養學生的應用意識,綜合實踐活動是培養應用意識很好的載體。
創新意識的培養是現代數學教育的基本任務,應體現在數學教與學的過程之中。
學生自己發現和提出問題是創新的基礎;
獨立思考、學會思考是創新的核心;
歸納概括得到猜想和規律,並加以驗證,是創新的重要方法。創新意識的培養應該從義務教育階段做起,貫穿數學教育的始終。
3. 初中數學概念
我覺得你現在時間緊張,先不要做太多的練習,先看書,尤其是例題,我覺得挺重要,而且數學概念是不用背的,如果你看懂了例題,而且會做這方面的題目,概念就自然而然的熟記於心了。下面是一些復習地方和資料你自己找找看吧,應該有對有用的!
亂粘一通,你自己找找看,找不到就算了,我無所謂。
初中生學習網站初中數學資源網
http://www.1230.org/
初中數學網
http://www.czsx.com.cn/
初中數學樂園
http://www.0618.org/
華師大初中數學網站
http://www.hsdczsx.com/Article_Index.asp
中學數學題庫
http://www.tiku.net/
這是初中的代數公式:
http://www.e3g.com/math/expressions/czds/index1.html
初中數學常用公式:
http://e.northeast.cn/system/2006/09/11/050545772.shtml
初中數學公式,這個需要下載:
http://www.hnmaths.com/Soft/czsx/200605/693.html
常用數學公式表:
http://www.wen8.net/html/307.htm
http://forum.heftye.com/viewthread.php?tid=740
關於數學與英語學習方法的:
http://..com/question/18903134.html
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
(還有一些,大家幫補充吧)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積=底×高÷2
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四邊形 d,D-對角線長
α-對角線夾角 S=dD/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 S=ah
=absinα
菱形 a-邊長
α-夾角
D-長對角線長
d-短對角線長 S=Dd/2
=a2sinα
梯形 a和b-上、下底長
h-高
m-中位線長 S=(a+b)h/2
=mh
圓 r-半徑
d-直徑 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圓環 R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑 S=π(R2-r2)
=π(D2-d2)/4
橢圓 D-長軸
d-短軸 S=πDd/4
立方圖形
名稱 符號 面積S和體積V
正方體 a-邊長 S=6a2
V=a3
長方體 a-長
b-寬
c-高 S=2(ab+ac+bc)
V=abc
稜柱 S-底面積
h-高 V=Sh
棱錐 S-底面積
h-高 V=Sh/3
稜台 S1和S2-上、下底面積
h-高 V=h[S1+S2+(S1S1)1/2]/3
擬柱體 S1-上底面積
S2-下底面積
S0-中截面積
h-高 V=h(S1+S2+4S0)/6
圓柱 r-底半徑
h-高
C—底面周長
S底—底面積
S側—側面積
S表—表面積 C=2πr
S底=πr2
S側=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圓柱 R-外圓半徑
r-內圓半徑
h-高 V=πh(R2-r2)
直圓錐 r-底半徑
h-高 V=πr2h/3
圓台 r-上底半徑
R-下底半徑
h-高 V=πh(R2+Rr+r2)/3
球 r-半徑
d-直徑 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半徑
h-高 V=πh[3(r12+r22)+h2]/6
圓環體 R-環體半徑
D-環體直徑
r-環體截面半徑
d-環體截面直徑 V=2π2Rr2
=π2Dd2/4
桶狀體 D-桶腹直徑
d-桶底直徑
h-桶高 V=πh(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
4. 初中數學所有的概念
1過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r) 合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b 如果在一個頂點周圍有 k 個正 n 邊形的角,由於這些角的和應為 360° ,因此 k×(n-2)180° / n=360° 化為( n-2 ) (k-2)=4
弧長計算公式: L=n 兀 R / 180
扇形面積公式: S 扇形 =n 兀 R^2 / 360=LR / 2
內公切線長 = d-(R-r) 外公切線長 = d-(R+r)
5. 初中 數學基本概念
初中數學知識總結 初中數學知識總結(北師大版)
一、實數
1.1有理數
1.1.1有理數的定義:整數和分數的統稱。
1.1.2有理數的分類:
(1)分為整數和分數。而整數分為正整數、零和負整數 ;分數分為正分數和負分數。
(2)分為正有理數、零和負有理數。而正有理數分為正整數和正分數;負有理數分為負整數和負分數。
1.1.3數軸
1.1.3.1數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。
1.1.3.2數軸的三要素:①原點②正方向③單位長度
1.1.3.3每個有理數都能用數軸上的點表示
1.1.4相反數
1.1.4.1相反數的定義:只有符號不同的兩個數就做互為相反數(註:0的相反數為0
1.1.4.2相反數的意義:離原點距離相等的兩個點所表示的兩個數互為相反數
1.1.4.3相反數的判別
(1)若 ,則 、 互為相反數
(2)若兩個數的絕對值相等,且符號相反,則這兩個數互為相反數。
1.1.5倒數
1.1.5.1倒數的定義:若兩個數的乘積等於1,則這兩個數互為倒數。(若ab=1 ,則 a、b互為倒數)註:零沒有倒數。
1.1.6絕對值
1.1.6.1絕對值的定義:在數軸上,表示一個數到原點的距離(a的絕對值記作∣a∣)
1.1.6.2絕對值的性質:∣a∣≥0
1.1.7有理數大小的比較
1.1.7.1正數大於0,負數小於0
1.1.7.2正數大於負數
1.1.7.3兩個正數,絕對值大的這個數就大,絕對值小的這個數就小;兩個負數,絕對值大的這個數就小,絕對值小的這個數就大。
1.1.7.4作差法:兩個有理數相減。若大於0,則被減數大;若等於0,則兩個數相等;若小於0,則減數大。
1.1.7.5作商法:兩個有理數相除(除數或分母不為0)。若大於1,則被除數大;若等於1,則兩個數相等;若小於1,則除數大。
1.1.8有理數的加法
1.1.8.1運演算法則:①符號相同的兩個數相加,取相同的符號,並把絕對值相加②絕對值不相等的異號兩數相加,取絕對值較大的加數符號,並用較大的絕對值減去較小的絕對值(互為相反數的兩個數相加等於0)③任何有理數加0仍等於這個數。
1.1.8.2加法交換律在有理數加法中仍然適用,即: a+b=b+a
1.1.8.3加法結合律在有理數加法中仍然適用,即: a+(b+c)=(a+b)+c
1.1.9有理數的減法
1.1.9.1運演算法則:減去一個數等於加上這個數的相反數
1.1.9.2有理數減法—轉化→有理數加法
1.1.10有理數的乘法
1.1.10.1運演算法則:①兩個數相乘,同號得正,異號得負,並把絕對值相乘
2.2整式
2.2.1整式的概念
2.2.1.1單項式:只含有數字與字母乘積的代數式叫單項式(單獨的一個數或字母也是單項式)。其中,數字因式叫做單項式的系數,單項式中所有的字母的指數的和叫做這個單項式的次數。
2.2.1.2多項式:幾個單項式的和叫做多項式。多項式中的每一個單項式叫做多項式的項,其中不含字母的項叫做常數項。
2.2.1.3多項式的次數:多項式中系數最高項的次數叫做多項式的次數。
2.2.1.4降(升)冪排列:把一個多項式按某一字母的指數從大(小)到小(大)的順序排列起來。
2.2.1.5整式的定義:單項式和多項式的統稱。
2.2.1.6同類項的定義:所含字母相同,並且相同字母的次數也相同的項叫做同類項。
2.2.1.7合並同類項:把多項式中同類項合成一項的過程叫做合並同類項。
2.2.1.8合並同類項的法則:把同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。
2.2.2整式的運算
2.2.2.1 2.2.3.1因式分解的定義:把一個多項式化成幾個整式的積的形式,叫做多項式的因式分解。
2.2.3.2因式分解的注意事項:因式分解要分解到不能再分解為止;因式分解與整式乘法互為逆運算。
2.2.3.3公因式的定義:一個多項式的各項都含有的相同的因式叫做這個多項式各項的公因式。
2.2.3.4分解因式的方法:①提取公因式法:如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種因式分解叫做提取公因式法。即: ②運用公式法:反用乘法公式,可以把某些多項式分解因式,這種方法叫做運用公式法(常用的有: 和 )③分組分解法:利用分組來分解因式的方法叫做分組分解法④十字相乘法:將 型的二次三項式分解為 。
2.3分式
2.3.1分式的概念
2.3.1.1分式的定義:A,B表示兩個整式,如果B中含有字母,式子 就叫做分式。其中A叫做分式的分子,B叫做分式的分母。
2.3.1.2 有理式的定義:整式和分式的統稱。
2.3.1.3 繁分式的定義:分式的分子或分母中含有分式,這樣的分式叫做繁分式。
2.3.1.4最簡分式的定義:當一個分式的分子和分母沒有公因式的時候就叫做最簡分式。
2.3.1.5約分的定義:根據分式的基本性質,把一個分式的分子與分母的公因式約去的過程就叫做約分。
2.3.1.6通分的定義:把異分母的分式化成和原來的分式相等的同分母的分式的過程叫做通分。
2.3.2分式的基本性質
2.3.2.1分式的基本性質:分式的分子分母都同時乘以或同時除以一個不為0的整式,分式的值不變,即
2.3.2.2分式的符號法則:分式的分子、分母和分式本身的符號,改變其中任何兩個,分式的值都不變,即
2.3.3分式的運算
2.3.2.3 分式的加減法計演算法則:同分母分式相加減,分母不變,分子相加減,即 ;異分母分式相加減,先通分成同分母的分式,再按同分母的分式相加減的法則進行計算,即 .
2.3.2.4分式的乘除法計演算法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母,即 ;分式除以分式,把除式的分子分母顛倒位置後,再按分式的乘法法則進行計算。
2.3.2.5分式的混合運算:①先算乘方(即:三級運算),再算乘除(即:二級運算),最後算加減(即:一級運算)②如果是同級運算,則按從左到右的運算順序計算③如果有括弧,先算小括弧,再算中括弧,最後算大括弧。
三、方程與方程組
3.1方程與方程組
3.1.1基本概念
3.1.1.1等式的定義:用等號表示相等關系的式子叫做等式。
3.1.1.2等式的性質:①等式兩邊同時加上或同時減去一個數或一個整式,所得結果仍是等式②等式兩邊同時乘以或同時除以一個不為0的數,所得結果仍為等式。
3.1.1.3方程的定義:含有未知數的等式叫做方程。
3.1.1.4方程的解:使方程兩邊相等的未知數的值叫做方程的解,只有一個未知數的方程的解也叫做方程的根。
3.1.1.5解方程的定義:求得方程的解的過程叫做解方程。
3.1.1.6一元一次方程:含有一個未知數,並且未知數的次數是1,系數不等於0的方程叫做一元一次方程,它的標准形式是ax+b=0,其中x是未知數,它有唯一解, (a≠0)
3.1.1.7二元一次方程:含有兩個未知數,並且含有未知數的項的次數都是1的整式方程叫做二元一次方程。
3.1.1.8一元二次方程:只含有一個未知數,並且未知數的最高次數是2,這樣的方程叫做一元二次方程,一般形式是ax+bx+c=0,其中ax稱為二次項,bx叫做一次項,c叫做常數項。
3.1.1.9一元二次方程的解法:①直接開方法②配方法③求根公式法④因式分解法。
3.1.1.11一元二次方程根的判別式: 叫做一元二次方程ax+bx+c=0的判別式。
3.1.1.12一元二次方程根與系數的關系:設 、 是方程ax+bx+c=0(a≠0)的兩個根,那麼 + = , = ,根與系數關系的逆命題也成立。
3.1.1.13一元二次方程根的符號:設一元二次方根ax+bx+c=0(a≠0)的兩根為 、 。當 ≥0且 >0, + >0,兩根同正號;當 ≥0,且 >0, + <0,兩根同負號; <0時,兩根異號 + >0時,正根的絕對值較大, + <0時,負根的絕對值較大。
3.1.1.14整式方程:方程兩邊都是關於未知數的整式,這樣的方程叫做整式方程。
3.1.1.15分式方程:分母里含有未知數的方程叫做分式方程。
3.1.1.16增根:在方程變形時,有時可能產生不適合原方程的根,這種根叫做方程的增根(使方程的分母為0的根),因此解分式方程時要驗根。驗根的方法通常是把求得整式方程的根代入最簡公分母,使最簡公分母為0的就是增根。
3.1.1.17二元一次方程:含有兩個未知數並且含有未知數的項的次數是1,這樣的方程叫做二元一次方程(注意:對於未知數來說,構成方程的代數式必須是整式)。
3.1.1.18二元一次方程的解:滿足二元一次方程的一對未知數的值叫做二元一次方程的一個解。
3.1.1.19二元一次方程的解法:給其中一個未知數一個確定值,解關於另一個未知數的方程,得出這個未知數的值,由此就得到二元一次方程的一個解。
3.1.1.20二元一次方程組:兩個二元一次方程合成一組就叫做二元一次方程組。
3.1.1.21二元一次方程組的解:構成二元一次方程的公共解叫做二元一次方程組的解。
3.1.1.22二元一次方程組的解法:解二元一次方程組的基本思想就是消去一個未知數轉化成一元一次方程求解,消元的基本方法就是代入法和加減法。(①代入法:代入法的基本思想是方程組中的同一個未知數應該表示相同的值,所以一個方程中的某個未知數,可以用另一個方程中表示這個未知數的代數式來代替,從而就可以減少一個未知數,把二元一次方程組轉化成一元一次方程。②加減法:加減法的基本思想是,根據等式的基本性質2,使兩個方程中某一個未知數的系數絕對值相等,然後根據等式的基本性質1,將兩個方程相加減,從而可以消去一個未知數,轉化為一元一次方程。)
3.1.1.23三元一次方程組:含有三個未知數,並且每個方程的未知項次數都是1,這樣的方程叫做三元一次方程組。
3.1.1.24三元一次方程組的解法:解三元一次方程組的基本思想是消去一個未知數轉化成二元一次方程組,再按照二元一次方程組的解法來解。
3.2列方程(方程組)解應用題
3.2.1基本概念
3.2.1.1列方程解應用題的一般步驟:審題、設元、列方程、解方程、檢驗、寫答。
3.2.1.2設未知數的方法:①直接設元;②間接設元;③設輔助未知數。
3.2.2常見的應用題
3.2.2.1行程問題:行程問題可以分為相遇問題、追及問題、環形問題、水(風)流四類問題。基本關系式:路程=速度×時間( )。
3.2.2.2工程問題:基本關系式:工作量=工作時間×工作效率。
3.2.2.3數字問題:(了解幾個相關名詞的概念,如連續自然數、連續整數、連續奇數、連續偶數,並懂得多位數的幾種表示方法)。
3.2.2.4增長率問題:基本關系式:①原產量+增產量=實際產量②增長率=增長數/基礎數③實際產量=原產量(1+增長率)
3.2.2.5利潤問題:基本關系式:利潤=售價-進價。
3.2.2.6利率問題:(了解幾個相關名詞的概念,如:本金、利息、本息和、期數、利率)基本關系式:本息和=本金+利息,利息=本金×利率×期數。
3.2.2.7幾何問題:常用的公式:長方形、正方形、三角形、梯形、園的面積和周長公式。
3.2.2.8濃度問題:基本關系式:濃度=溶質質量/溶液質量×100%
3.2.2.9其他問題:比例分配問題、雞兔同籠問題、函數應用題…
四、不等式與不等式組
4.1不等式
4.1.1基本概念
4.1.1.1不等式:用不等號表示不等關系的式子叫做不等式。
4.1.1.2 不等號:常用的不等號有:①<②>③≠④≤⑤≥
4.1.1.3不等式的性質:①不等式兩邊同時加上(或減去)一個整式,不等號的方向不變,即若 > ,則 > ②不等式的兩邊同時乘以(或同時除以)一個正數,不等號的方向不變③不等式的兩邊同時乘以(或同時除以)一個負數,不等式的符號改變。
4.1.1.4不等式的解:使得不等式成立的未知數的值叫做不等式的解。
4.1.1.5不等式的解集:一個不等式的所有解組成這個不等式的解集。
4.1.1.6解不等式的基本方法:①去分母②去括弧③移項④合並同類項⑤化系數為1
4.2不等式組
4.2.1基本概念
4.2.1.1一元一次不等式組:由幾個一元一次不等式組成的不等式組叫做一元一次不等式組。
4.2.1.2一元一次不等式組的解集:幾個一元一次不等式的解集的公共部分叫做一元一次不等式組的解集。
4.2.1.3解不等式組:求不等式的解集的過程叫做解不等式。
五、函數
5.1平面直角坐標系 變數與函數
5.1.1基本概念
5.1.1.1平面直角坐標系:為了用一對實數表示平面內一點,在平面內畫兩條互相垂直的數軸,組成平面直角坐標系。其中,水平的數軸叫做 軸或者橫軸,取向右為正方向;鉛直的數軸叫做 軸或者縱軸,取向上為正方向,兩個數軸相交於點O,點O叫做坐標原點。
5.1.1.2象限:橫軸和縱軸把平面分為四個象限,其中右上角的為第一象限,左上角的為第二象限,左下角的為第三象限,右下角的為第四象限
5.1.1.3點的坐標的表示方法:按橫坐標在前,縱坐標在後的順序書寫,中間用逗號隔開。
5.1.1.4常量和變數:在某一變化過程中,數值保持不變的量叫做常量,可以取不同值的量叫做變數
5.1.1.5函數:在某個變化過程中,有兩個變數 和 ,如果對於x在某一范圍內的每一個確定的值, 有惟一確定的值和它對應,那麼就把 叫做 的函數,其中, 為因變數, 為自變數。
5.1.1.6自變數的取值范圍:如果用解析式表示函數,那麼自變數的取值范圍就是使解析式有意義的自變數取值的全體。
5.1.1.7函數值:對於自變數在取值范圍內的一個確定的值,例如 = ,函數有惟一確定的對應值,這個對應值叫做 = 時的函數值,簡稱函數值
5.1.1.8函數的表示方法:①解析法:把兩個變數的對應關系用數學式子來表示②列表發:把兩個變數的對應關系用列表的方法表示③圖像法:把兩個變數的對應關系在平面直角坐標系內用圖像表示。(通常將以上三種方法結合起來運用)
5.1.1.9由函數解析式畫圖像的步驟:列表、描點、連線。
5.2正比例函數
5.2.1基本概念
5.2.1.1正比例函數的定義:形如 ( ≠0)的函數叫做正比例函數。
5.2.1.2 正比例函數的圖像:正比例函數的圖像是經過坐標原點的一條直線。
5.2.1.3 正比例函數的性質:①當 >0時, 隨 的增大而增大②當 <0時, 隨 的增大而減小。
5.3一次函數
5.3.1基本概念
5.3.1.1 一次函數的定義:形如 ( , 是常數)的函數叫做一次函數。
5.3.1.2 一次函數的圖像:一次函數的圖像是一條與直線 ( ≠0)平行的一條直線。
5.3.1.3一次函數的性質:
①當 >0時,y隨x的增大而增大
當 >0時,圖像經過一二三象限
當 <0時,圖像經過一三四象限
當 =0時,為正比例函數
②當 <0時,y隨x的增大而減小。
當 >0時,圖像經過一二四象限
當 <0時,圖像經過二三四象限
當 =0時,為正比例函數
5.4反比例函數
5.4.1基本概念
5.4.1.1 反比例函數的定義:形如 的函數叫做反比例函數。
5.4.1.2 反比例函數的圖像:反比例函數的圖像是雙曲線。
5.4.1.3 反比例函數的性質:①當 >0時,在一、三象限內, 隨x增大而減小②當 <0時,在二、四象限內, 隨 的增大而增大。
5.5二次函數
5.5.1基本概念
5.5.1.1二次函數的定義:形如 ( , , 為常數, ≠0)的函數叫做二次函數。
5.5.1.2二次函數的圖像:是對稱軸平行與 軸的拋物線。
5.5.1.3二次函數的性質:①拋物線 ( ≠0)的頂點坐標是 ,對稱軸是直線 ②當 >0時,在 時,函數有最小值 ;當 <0時,在 時,函數有最大值 ③當 時,拋物線 ( ≠0)與x軸有兩個交點;當 <0時,拋物線與x軸沒有交點;當 =0時,拋物線與x軸有一個交點。④當 >0時,拋物線開口向上,當a<0時拋物線開口向下⑤當 >0時,交點在y軸的正半軸,當c<0時,交點在y軸的負半軸,當 =0時,交點在坐標原點⑦當a、b同號時, <0,拋物線的對稱軸在y軸的左側,當 、 異號時, >0,拋物線的對稱軸在 軸的右側,當 =0時,拋物線的對稱軸就是 軸。
5.5.1.4二次函數解析式的三種形式:①一般式;②交點式;③頂點式。
六、相交線與平行線
6.1相交線
6.1.1基本概念
6.1.1.1對等角的定義:兩條直線相交成四個角,其中沒有公共邊的兩個角叫做對頂角。
6.1.1.2對頂角的性質:對頂角相等。
6.1.1.3對頂角的定義與性質的關系:對頂角的定義揭示了兩個角的關系,而對頂角的性質揭示了對頂角的數量關系。只有用定義判定出兩個角是對頂角才能根據角的性質得出這兩個角相等。
6.1.1.4鄰補角的定義:兩條直線相交成的四個角中有一個公共頂點,還有一條公共邊的兩個角叫做鄰補角。
6.1.1.5互余的定義:如果兩個角相加等於90°,那麼這兩個角互余。(注意:這兩個角可以沒有公共邊和公共頂點)
6.1.1.6互補的定義:如果兩個角相加等於180°,那麼這兩個角互補。(注意:這兩個角可以沒有公共邊和公共頂點)
6.1.1.7垂直的定義:兩條直線相交成的四個角中,有一個是直角時,就說這兩條直線互相垂直,其中一條叫做另外一條的垂線,交點叫做垂足。
6.1.1.8垂直的表示方法:若直線AB垂直直線CD,可以記作 .
6.1.1.9垂線段的定義:過直線外一點向已知直線做垂線,這個點到垂足之間的距離叫做這個點到直線的垂線段。
6.1.1.10垂線的性質:①過一點有且只有一條直線與已知直線垂直;②直線外一點與直線各點連結的所有線段中,垂線段最短。
6.1.1.11點到直線的距離:從直線外一點到這條直線的垂線段的距離叫做點到直線的距離。
6.1.1.12線段的垂直平分線(中垂線)的定義:過線段的中點並且垂直於線段的直線叫做線段的垂直平分線或中垂線。
6.1.1.13垂直平分線(中垂線)的性質:線段垂直平分線(中垂線)上的點到這條線段兩端的距離相等。
6.1.1.14三線八角的定義:兩條直線被第三條直線所截形成了八個角,通常稱為三線八角。
6.1.1.15同位角的定義:在同一平面內,兩條直線被第三條直線所截,既在兩條直線的同側,又在截線同側的一對角稱為同位角。
6.1.1.16內錯角的定義:在同一平面內,兩條直線被第三條直線所截,在兩條直線的內部且在截線的兩側,位置相錯的一對角叫做內錯角。
6.1.1.17同旁內角的定義:在同一平面內,兩條直線被第三條直線所截,在前兩條直線的內部並且在截線的同側的一對角叫做同旁內角。
6.2平行線
6.2.1基本概念
6.2.1.1平行線的定義:在同一平面內,不相交的兩條直線叫做平行線。
6.2.1.2平行線的表示方法:若直線 平行直線 ,則記作 // .
6.2.1.3 平行線公理:過直線外一點,有且只有一條直線於這條直線平行。
6.2.1.4平行線公理的推論:如果兩條直線和第三條直線平行,那麼這兩條直線也互相平行,簡說成:平行於同一條直線的兩條直線互相平行。即若 // , // ,則 // .
6.2.1.5平行線的判定方法:①同位角相等,兩直線平行;②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行。
6.2.1.6平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。
七、三角形
7.1三角形
7.1.1基本概念
7.1.1.1三角形的定義:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
7.1.1.2三角形的邊的定義:組成三角形的線段叫做三角形的邊。
7.1.1.3三角形周長的定義:三角形三條邊之和叫做三角形的周長。
7.1.1.4三角形頂點的定義:三角形相鄰兩邊的公共端點叫做三角形的頂點。
7.1.1.5三角形內角的定義:三角形相鄰兩邊所組成小於180°的角叫做三角形的內角,簡稱三角形的角。
7.1.1.6三角形的外角的定義:三角形的一邊與另一邊的延長線所成的角叫做三角形的外角。
7.1.1.7三角形的表示方法:三角形用「△」來表示。
7.1.1.8三角形的讀法:「△ABC」讀作「三角形ABC」。
7.1.2三角形的分類
7.1.2.1分類1:按照三角形的邊分,可以分為三類:不等邊三角形、等腰三角形、等邊三角形。
7.1.2.2分類2:按照三角形的角分,可以分為三類:銳角三角形、直角三角形、鈍角三角形
7.1.3三角形中的重要線段
7.1.3.1三角形的角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做這個三角形的角平分線。
7.1.3.2角平分線的性質:三角形內角平分線上的任意一點到這個角兩邊的距離相等。
7.1.3.3角平分線的判定定理:到三角形兩邊距離相等的點,一定在這兩條邊為邊的角的平分線上。
7.1.3.4三角形的中線:在三角形中,連結一個頂點與它對邊中點的線段叫做這個三角形的中線。
18.4概率
6. 數學概念的含義是什麼,中學數學常見的數學概念的定義方式有哪些
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考: 一、課內重視聽講,課後及時復習。 新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。 二、適當多做題,養成良好的解題習慣。 要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。 三、調整心態,正確對待考試。 首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。 在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。 由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。 如何學好數學2 高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。 有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。 至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。 l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。 2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。 3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。 4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
7. 初中數學的概念定義
★重點★ 實數的有關概念及性質,實數的運算
內容提要
一、 重要概念
1.數的分類及概念 數系表:
說明:「分類」的原則:
⑴相稱(不重、不漏)
⑵有標准
2.非負數:正實數與零的統稱。(表為:x≥0) 常見的非負數有:性質:若干個非負數的和為0,則每個非負擔數均為0。
3.倒數:
①定義及表示法
②性質:A.(a≠±1);
B.中,a≠0;
C. 0<a<1時,>1; a>1時,<1;
D.a與乘積為1。
4.相反數:
①定義及表示法
②性質: A. a≠0時,a≠-a;
B.a與-a在數軸上的位置;
C.和為0,商為-1(0除外)。
5.數軸:
①定義(「三要素」)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數—自然數)
定義及表示:奇數:2n-1 偶數:2n(n為自然數)
7.絕對值:
①定義(兩種):
代數定義:正數和0的絕對值是它本身,負數的絕對值是它的相反數.
互為相反數的兩個數的絕對值相等
a的絕對值用「|a |」表示.讀作「a的絕對值」.
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號「││」是「非負數」的標志;
③數a的絕對值只有一個;
④處理任何類型的題目,只要其中有「││」出現,其關鍵一步是去掉「││」符號。
二、 實數的運算
1. 運演算法則(加、減、乘、除、乘方、開方)
2. 運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的] 分配律)
3. 運算順序:
A.高級運算到低級運算;
B.(同級運算)從「左」 到「右」(如5÷ ×5);
C.(有括弧時)由「小」到「中」到「大」。
三、 應用舉例(略)
1. 已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。 ★重點★代數式的有關概念及性質,代數式的運算
內容提要
一、 重要概念 分類:
1.代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨 的一個數或字母也是代數式。整式和分式統稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。有除法運算並且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。
(數字與字母的積—包括單獨的一個數或字母) 幾個單項式的和,叫做多項式。
說明:
①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。
②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如, =x,=│x│等。
4.系數與指數 區別與聯系:
①從位置上看;
②從表示的意義上看
5.同類項及其合並
條件:
①字母相同;
②相同字母的指數相同 合並依據:乘法分配律
6.根式
表示方根的代數式叫做根式。
含有關於字母開方運算的代數式叫做無理式。
注意:
①從外形上判斷;
②區別:是根式,但不是無理式(是無理數)。
7.算術平方根
⑴正數a的正的平方根;
⑵算術平方根與絕對值
① 聯系:都是非負數,=│a│
②區別:│a│中,a為一切實數; 中,a為非負數。
8.同類二次根式、最簡二次根式、分母有理化 化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。
滿足條件
①被開方數的因數是整數,因式是整式;
②被開方數中不含有開得盡方的因數或因式。把分母中的根號劃去叫做分母有理化。
9.指數
⑴ 冪,乘方運算 ① a>0時,an >0;②a<0,an >0(n是偶數), an <0(n是奇數)
⑵零指數:=1(a≠0)
⑶ 負整指數:(a≠0)
二、 運算定律、性質、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質
⑴基本性質:= (m≠0)
⑵符號法則:
⑶繁分式:①定義;②化簡方法(兩種)
3.整式運演算法則(去括弧、添括弧法則)
4.冪的運算性質:① · = ;② ÷ = ;③ = ;④ = ;⑤
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b)
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術根的性質:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .
三、 應用舉例(略)
四、 數式綜合運算(略) ★重點★
內容提要
一、 重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)
二、 計算方法
1.樣本平均數:
⑴ ;⑵若 , ,…,,則 (a—常數, , ,…, 接近較整的常數a);
⑶加權平均數:;
⑷平均數是刻劃數據的集中趨勢(集中位置)的特徵數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越准確。
2.樣本方差:⑴ ;⑵若,,…,,則 (a—接近 、 、…、 的平均數的較「整」的常數);若 、 、…、 較「小」較「整」,則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特徵數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標准差
三、 應用舉例(略) ★重點★
1相交線與平行線、三角形、四邊形的有關概念、判定、性質。
內容提要
一、 直線、相交線、平行線
1.線段、射線、直線三者的區別與聯系 從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為餘角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區別與聯系)
11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題 二、 三角形 分類:⑴按邊分; ⑵按角分
二、三角形
1.定義(包括內、外角)
2.三角形的邊角關系:
⑴角與角:
①內角和及推論;
②外角和;
③n邊形內角和;
④n邊形外角和。
⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②××線的交點—三角形的×心③性質 ① 高線②中線③角平分線④中垂線⑤中位線 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
註:三角形的重心——中線的交點
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質
5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積 ⑴一般計算公式⑵性質:等底等高的三角形面積相等。
7.重要輔助線 ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法—反證法:①反設②歸謬③結論 ⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關系:加倍法、折半法 ⑸證線段和差關系:延結法、截余法 ⑹證面積關系:將面積表示出來
三、 四邊形
分類表:1.一般性質(角) ⑴內角和:360° ⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。⑶外角和:360°
2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定 ⑶判定步驟:四邊形→平行四邊形→矩形→正方形 ┗→菱形——↑ ⑷對角線的紐帶作用:
3.對稱圖形 ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。
6.作圖:任意等分線段。
四、 應用舉例(略) ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)
內容提要
一、 基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2. 分類:
二、 解方程的依據—等式性質
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括弧→移項→合並同類項→ 系數化成1→解。
2. 元一次方程組的解法:⑴基本思想:「消元」⑵方法:①代入法 ②加減法
四、 一元二次方程
1.定義及一般形式:
2.解法:
⑴直接開平方法(注意特徵)
⑵配方法(注意步驟—推倒求根公式)
⑶公式法:
1.化方程為一般式ax2-bx+c=0
2.確定判別式,計算b2-4ac;
3.若b2-4ac>0,代入公式;
若b2-4ac<0,該方程在實數域內無解,在虛數域內解為。
若b2-4ac=0,該方程在實數域內有唯一的一個解
⑷因式分解法(特徵:左邊=0)
3.根的判別式:
4.根與系數頂的關系:逆定理:若 ,則以 為根的一元二次方程是:。
五、 可化為一元二次方程的方程
1.分式方程
⑴定義
⑵基本思想:
⑶基本解法:①去分母法②換元法(如,)
⑷驗根及方法
2.無理方程
⑴定義
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)
②換元法
⑷驗根及方法
3.簡單的二元二次方程組 由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。
六、 列方程(組)
解應用題 一概述 列方程(組)解應用題是中學數學聯系實際的一個重要方面。
其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。
⑵設元(未知數)。
①直接未知數
②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。
⑶用含未知數的代數式表示相關的量。
⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。
⑸解方程及檢驗。
⑹答案。綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解應用題的關鍵。
常用的相等關系
1. 行程問題(勻速運動) 基本關系:s=vt ⑴相遇問題(同時出發):+ = ;
⑵追及問題(同時出發):若甲出發t小時後,乙才出發,而後在B處追上甲,則 ⑶水中航行:;
2. 配料問題:溶質=溶液×濃度 溶液=溶質+溶劑
3.增長率問題
4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位「1」)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。
注意語言與解析式的互化
如,「多」、「少」、「增加了」、「增加為(到)」、「同時」、「擴大為(到)」、「擴大了」、…… 又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。
注意從語言敘述中寫出相等關系
。如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。注意單位換算 如,「小時」「分鍾」的換算;s、v、t單位的一致等。
七、應用舉例(略) ★重點★一元一次不等式的性質、解法
內容提要
1. 定義:a>b、a<b、a≥b、a≤b、a≠b。
2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3. 一元一次不等式組:
4. 不等式的性質:⑴a>b←→a+c>b+c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac<bc(c<0) ⑷(傳遞性)a>b,b>c→a>c ⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)
7.應用舉例(略) ★重點★相似三角形的判定和性質
內容提要
一、本章的兩套定理
第一套(比例的有關性質):涉及概念:①第四比例項②比例中項③比的前項、後項,比的內項、外項④黃金分割等。
第二套:注意:①定理中「對應」二字的含義; ②平行→相似(比例線段)→平行。
相似三角形性質
1.對應線段…;
2.對應周長…;
3.對應面積…。
相關作圖
①作第四比例項;
②作比例中項。
證(解)題規律、輔助線
1.「等積」變「比例」,「比例」找「相似」。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴ ⑵ ⑶
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將「一份」看著k;對於等比問題,常用處理辦法是設「公比」為k。
5.對於復雜的幾何圖形,採用將部分需要的圖形(或基本圖形)「抽」出來的辦法處理。
五、 應用舉例(略) ★重點★正、反比例函數,一次、二次函數的圖象和性質。
內容提要
一、平面直角坐標系
1.各象限內點的坐標的特點
2.坐標軸上點的坐標的特點
3.關於坐標軸、原點對稱的點的坐標的特點
4.坐標平面內點與有序實數對的對應關系
二、函數
1.表示方法:
⑴解析法;
⑵列表法;
⑶圖象法。
2.確定自變數取值范圍的原則:
⑴使代數式有意義;
⑵使實際問題有 意義。
3.畫函數圖象:
⑴列表;
⑵描點;
⑶連線。
三、幾種特殊函數 (定義→圖象→性質)
1. 正比例函數
⑴定義:y=kx(k≠0) 或y/x=k。
⑵圖象:直線(過原點)
⑶性質:①k>0,…②k<0,…
2. 一次函數
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質:①k>0,…②k<0,…
3. 二次函數
⑴定義:特殊地, 都是二次函數。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。
用配方法變為 ,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質:a>0時,在對稱軸左側…,右側…;a<0時,在對稱軸左側…,右側…。
4.反比例函數 ⑴定義:或xy=k(k≠0)。⑵圖象:雙曲線(兩支)—用描點法畫出。⑶性質:①k>0時,圖象位於…,y隨x…;②k<0時,圖象位於…,y隨x…;③兩支曲線無限接近於坐標軸但永遠不能到達坐標軸。
四、重要解題方法
1. 用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,並應充分運用拋物線關於對稱軸對稱的特點,尋找新的點的坐標。
2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。
五、應用舉例(略) ★重點★解直角三角形
內容提要
一、三角函數
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函數值:30度 45度 60度
sin 根號1/2 根號2/2 根號3/2 根號1到根號3 根號里的數依次增大
cos 根號3/2 根號2/2 根號1/2 根號3到根號1 根號里的書依次減小
tan 根號3/3 根號9/3 根號27/3 根號里的數為3的1次方,3的2次方,3的3次方
3. 互余兩角的三角函數關系:sin(90°-α)=cosα;…
4. 三角函數值隨角度變化的關系
5.查三角函數表
二、解直角三角形
1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2. 依據:①邊的關系:②角的關系:A+B=90°
③邊角關系:三角函數的定義。注意:盡量避免使用中間數據和除法。
三、對實際問題的處理
1. 俯、仰角:
2.方位角、象限角:
3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
四、應用舉例(略) 重點
①圓的重要性質;
②直線與圓、圓與圓的位置關系;
③與圓有關的角的定理;
④與圓有關的比例線段定理。
內容提要
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.「三點定圓」定理
4.垂徑定理及其推論
5.「等對等」定理及其推論
與圓有關的角:
⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:
2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算 中心角:內角的一半:((解Rt△OAM可求出相關元素,、 等)
六、 一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、 點的軌跡 六條基本軌跡
八、 有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、 基本圖形
十、 重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
十一、應用舉例(略)
8. 初中數學的全部概念有哪些
1過兩點有且只有一條直線 2 兩點之間線段最短
3 同角或等角的補角相等 4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等
13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理 不在同一直線上的三個點確定一條直線
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r) ④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n∏R/180
145扇形面積公式:S扇形=n∏R/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
9. 中學數學概念教學的基本方式有哪些
一、情境引導,發現本質 概念是對研究對象的本質屬性的概括.而本質屬性的概括的過程是一個由感性到理性、由特殊到一般的思維過程,要使學生獲得清晰的概念,就要在概念教學中充分開展這樣一個過程.按照初中生的年齡特徵,要盡量聯系學生的實際生活經驗引入概念,讓學生在不知不覺中對概念潛移默化,而不是照本宣科,死記詞句.例如,在教學平面內點的直角坐標的概念時,實質上是建立在平面內點和有序實數對的一一對應關系基礎之上.我們可以藉助於學生們看電影時找座位等一些學生所熟悉的實例來引入課題,讓學生在無意識狀態下進入新的概念學習當中,而不是就書認書,硬背概念.當然,要注意這樣做的本身並不是目的,它只是實現教學目標的一種手段,是為了用形象的實例來探討研究對象的抽象本質屬性,因而應把精力放在如何把感性認識上升到理性認識這一過程上來.另外,生活實例並不等於數學概念,有的包括非本質屬性,而有的遺漏了某些本質屬性,因此教者在舉例時必須切實,防止學生對概念的曲解,走向另一個極端. 此外,在概念的教學過程中,要在概念的系統中形成概念,而不是突如其來地灌給學生.從原有的概念基礎上引入,既要注意從學生已有的知識的基礎上引入新概念,又要充分揭示新知識與舊概念的矛盾,使學生認識到舊概念的局限性,學習新概念的必要性.這就要求我們教者在教學前要很好地分析新概念在概念系統中的位置.例如,算術根在教材中的位置,它的前面是方根,後面是根式.它是為了便於研究根式的性質和進行根式的運算,因為正數的平方根有兩個值,它們互為相反數.因此研究二次根式的性質只要研究算術平方根的性質就可以了.算術根是為了解決實數范圍內方根運算的可行和單值而出現的,從而為研究根式鋪平了道路,它在概念系統中起到了承上啟下的作用. 二、呈現定義,促進理解 概念的定義是我們所研究對象的本質屬性的概括,措辭更是精煉,每個字詞都有其重要的作用.為了深刻領會概念的含義,教師不僅要注意對概念論述時用詞的嚴密性和准確性,同時還要及時糾正某些不當及概念認識上的錯誤,這樣有利於培養學生嚴密的邏輯思維習慣,逐步養成對定義的深入鑽研,逐字逐句加以分析,認真推敲的良好習慣. 例如,在講解等腰三角形概念時,一定要強調概念中的有兩條邊相等的「有」字,而不是只有兩條邊相等的「只有」二字.前面的有兩條邊相等包括了兩種情況:一是只有兩條邊相等的等腰三角形,即腰與底不相等的等腰三角形;二是三條邊相等的等腰三角形又叫等邊三角形,而後面的僅僅涉及到一種情況,排除了等邊三角形也是等腰三角形的這一特殊情況.又如,「a、b、c不全等於零」和「a、b、c全不等於零」,這兩條定義字詞都一樣,只是位置不同,但意義截然不同.再如,不在同一直線上的三點確定一個圓,若改寫成三點確定一個圓,得出一個新命題,它既包括了三點在同一直線上也包括了三點不在同一直線上的兩種情形,而在同一直線上的三點不可能確定一個圓,即圓上任意三點都不在同一直線上.故將不在同一直線上三點確定一個圓寫成三點確定一個圓是不成立的.因此,在講述此概念時應突出「不在同一直線上」這句話. 三、新舊聯系,正反對照 有些概念單純地講學生難以接受,難以掌握.但是把某些相關或相對的概念放在一起進行類比、對照,使學生既了解它們之間的聯系又注意到它們的區別,會使學生茅塞頓開,另闢蹊徑.兩個概念之間的關系,可分為相容和不相容兩種,相容又可分為同一、交叉和從屬三種關系.例如,正整數和自然數是同一關系,平方根和算術平方根是從屬關系,方根和根式是交叉關系,矩形和菱形是交叉關系,平行四邊形和梯形是不相容關系.又如:講「仰角」和「俯角」時,將這兩個概念進行對照比較,就不難區別誰是「仰角」,誰是「俯角」.再如,「圓心角」與「圓周角」,同學們已經知道了「圓心角」是頂點在圓心的角,由此及彼,大部分學生就可以得出「圓周角」的定義:頂點在圓上的角叫「圓周角」這又恰恰錯了.此時教師再將「圓周角」的定義敘述出來,學生就會覺得恍然大悟.這樣通過比較「圓心角」與「圓周角」的概念一目瞭然,清清楚楚. 對數學概念的深刻理解,是提高學生解題能力的基礎;反之,也只有通過解題,學生才能加深對概念的認識,才能更完整、更深刻地理解和掌握概念的內涵和外延.課本中直接運用概念解題的例子很多,教學中要充分利用.同時,對學生在理解方面易出錯誤的概念,要設計一些有針對性的題目,通過練習、講評,使學生對概念的理解更深刻、更透徹. 四、深入剖析,揭示本質 數學概念是數學思維的基礎,要使學生對數學概念有透徹清晰的理解,教師首先要深入剖析概念的實質,幫助學生弄清一個概念的內涵與外延.也就是從質和量兩個方面來明確概念所反映的對象.如,掌握垂線的概念包括三個方面:①了解引進垂線的背景:兩條相交直線構成的四個角中,有一個是直角時,其餘三個也是直角,這反映了概念的內涵.②知道兩條直線互相垂直是兩條直線相交的一個重要的特殊情形,這反映了概念的外延.③會利用兩條直線互相垂直的定義進行推理,知道定義具有判定和性質兩方面的功能.另外,要讓學生學會運用概念解決問題,加深對概念本質的理解.
10. 初中數學概念有哪些
數學:
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)