A. 進制的解釋
進位制/位置計數法是一種記數方式,故亦稱進位記數法/位值計數法,可以用有限的數字元號代表所有的數值。可使用數字元號的數目稱為基數(en:radix)或底數,基數為n,即可稱n進位制,簡稱n進制。現在最常用的是十進制,通常使用10個阿拉伯數字0-9進行記數。
對於任何一個數,我們可以用不同的進位制來表示。比如:十進數57(10),可以用二進製表示為111001(2),也可以用五進製表示為212(5),也可以用八進製表示為71(8)、用十六進製表示為39(16),它們所代表的數值都是一樣的。
進制一覽
十進制
人類天然選擇了十進制。
由於人類解剖學的特點,雙手共有十根手指,故在人類自發採用的進位制中,十進制是使用最為普遍的一種。成語「屈指可數」某種意義上來說描述了一個簡單計數的場景,而原始人類在需要計數的時候,首先想到的就是利用天然的算籌——手指來進行計數。
十進制編碼幾乎就是數值本身。
數值本身是一個數學上的抽象概念。經過長期的演化、融合、選擇、淘汰,系統簡便、功能全面的十進制計數法成為人類文化中主流的計數方法,經過基礎教育的訓練,大多數的人從小就掌握了十進制計數方法。盤中放了十個蘋果,通過數蘋果我們抽象出來「十」這一數值,它在我們的腦海中就以「10」這一十進制編碼的形式存放和顯示,而不是其它的形式。從這一角度來說,十進制編碼幾乎就是數值本身。
十進制的基數為10,數碼由0-9組成,計數規律逢十進一。
二進制
二進制有兩個特點:它由兩個數碼0,1組成,二進制數運算規律是逢二進一。
為區別於其它進制,二進制數的書寫通常在數的右下方註上基數2,或在後面加B表示,其中B是英文二進制Binary的首字母。
例如:二進制數10110011可以寫成(10110011)2,或寫成10110011B。對於十進制數可以不加標注,或加後綴D,其中D是英文十進制Decimal的首字母D。計算機領域我們之所以採用二進制進行計數,是因為二進制具有以下優點:
1) 二進制數中只有兩個數碼0和1,可用具有兩個不同穩定狀態的元器件來表示一位數碼。例如,電路中某一通路的電流的有無,某一節點電壓的高低,晶體管的導通和截止等。
2) 二進制數運算簡單,大大簡化了計算中運算部件的結構。
二進制數的加法和乘法基本運演算法則各有四條,如下:
0+0=0,0+1=1,1+0=1,1+1=10
0×0=0,0×1=0,1×0=0,1×1=1
3)二進制天然兼容邏輯運算。
但是,二進制計數在日常使用上有個不便之處,就是位數往往很長,讀寫不便,如:把十進制的100000D寫成二進制就是11000011010100000B,所以計算機領域我們實際採用的是十六進制。二進制數轉換為十六進制數時,長度縮減為原先的約四分之一,把十進制的100000寫成八進制就是303240。十六進制的一個數位可代表二進制的四個數位。這樣,十進制的100000寫成十六進制就是186A0。
八進制
由於二進制數據的基數R較小,所以二進制數據的書寫和閱讀不方便,為此,在小型機中引入了八進制。八進制的基數R=8=2^3,有數碼0、1、2、3、4、5、6、7,並且每個數碼正好對應三位二進制數,所以八進制能很好地反映二進制。八進制用下標8或數據後面加O表示 例如:二進制數據 ( 11 101 010 . 010 110 100 )2 對應八進制數據 (352.264)8或352.264O。
十六進制
由於二進制數在使用中位數太長,不容易記憶,所以又提出了十六進制數。
十六進制數有兩個基本特點:它由十六個數碼:數字0~9加上字母A-F組成(它們分別表示十進制數10~15),十六進制數運算規律是逢十六進一,即基數R=16=2^4,通常在表示時用尾部標志H或下標16以示區別,在c語言中用添加前綴0x以表示十六進制數。
例如:十六進制數4AC8可寫成(4AC8)16,或寫成4AC8H。
位權概念
對於形式化的進製表示,我們可以從0開始,對數字的各個數位進行編號,即個位起往左依次為編號0,1,2,……;對稱的,從小數點後的數位則是-1,-2,……
進行進制轉換時,我們不妨設源進制(轉換前所用進制)的基為R1,目標進制(轉換後所用進制)的基為R2,原數值的表示按數位為AnA(n-1)……A2A1A0.A-1A-2……,R1在R2中的表示為R,則有(AnA(n-1)……A2A1A0.A-1A-2……)R1=(An*R^n+A(n-1)*R^(n-1)+……+A2*R^2+A1*R^1+A0*R^0+A-1*R^(-1)+A-2*R^(-2))R2
(由於此處不可選擇字體,說明如下:An,A2,A-1等符號中,n,2,-1等均應改為下標,而上標的冪次均用^作為前綴)
舉例:
一個十進制數110,其中百位上的1表示1個10^2,既100,十位的1表示1個10^1,即10,個位的0表示0個10^0,即0。
一個二進制數110,其中高位的1表示1個2^2,即4,低位的1表示1個2^1,即2,最低位的0表示0個2^0,即0。
一個十六進制數110,其中高位的1表示1個16^2,即256,低位的1表示1個16^1,即16,最低位的0表示0個16^0,即0。
可見,在數制中,各位數字所表示值的大小不僅與該數字本身的大小有關,還與該數字所在的位置有關,我們稱這關系為數的位權。
十進制數的位權是以10為底的冪,二進制數的位權是以2為底的冪,十六進制數的位權是以16為底的冪。數位由高向低,以降冪的方式排列。
B. 進制數到底是什麼意思網上有的不要說了 舉例子
2進制就是0和1表示所有的數,比如常數1就是01,3就是11,5就是101。低位滿了就進位。
10進制就是平時用的數。
16進制就是0-F。F就是10進制的15。所有進制都是低位滿了進位。
C. 數學中十進制是什麼意思
十進制
全世界通用的十進制,即1.滿十進一,滿二十進二,以此類推……2.按權展開,第一位權為10^0,第二位10^1……以此類推,第N位10^(N-1),該數的數值等於每位位的數值*該位對應的權值之和。
D. 什麼是進制,求詳解!!!基礎講起,謝謝各位大哥大姐!
二進制
18世紀德國數理哲學大師萊布尼茲從他的傳教士朋友鮑威特寄給他的拉丁文譯本《易經》中,讀到了八卦的組成結構,驚奇地發現其基本素數(0)(1),即《易經》的陰爻- -和__陽爻,其進位制就是二進制,並認為這是世界上數學進制中最先進的。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,其運算模式正是二進制。它不但證明了萊布尼茲的原理是正確的,同時也證明了〈易經〉數理學是很了不起的。
二進制數
一、二進制數的表示法
二進制是計算技術中廣泛採用的一種數制。二進制數是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」。二進制數也是採用位置計數法,其位權是以2為底的冪。例如二進制數110.11,其權的大小順序為22、21、20、2-1、2-2。對於有n位整數,m位小數的二進制數用加權系數展開式表示,可寫為:
(N)2=an-1×2n-1+an-2×2n-2+……+a1×21+a0×20+a-1×2-1+a-2×2-2
+……+a-m×2-m=
式中aj表示第j位的系數,它為0和1中的某一個數。
二進制數一般可寫為:(an-1an-2…a1a0.a-1a-2…a-m)2。
【例1102】將二進制數111.01寫成加權系數的形式。
解: (111.01)2=1×22+l×21+1×20+1×2-2
二、二進制數的加法和乘法運算
二進制數的算術運算的基本規律和十進制數的運算十分相似。最常用的是加法運算和乘法運算。
1. 二進制加法
有四種情況: 0+0=0
0+1=1
1+0=1
1+1=0 進位為1
【例1103】求 (1101)2+(1011)2 的和
解: 1 1 0 1
+ 1 0 1 1
1 1 0 0 0
2. 二進制乘法
有四種情況: 0×0=0
0×1=0
1×0=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之積
解: 1 1 1 0
× 1 0 1
1 1 1 0
0 0 0 0
+ 1 1 1 0
1 0 0 0 1 1 0
開放分類:
計算機技術、數學
貢獻者:
lewuyang、f03055、高樓居士
本詞條在以下詞條中被提及:
域名、約翰·馮·諾依曼、2、1、38、子網掩碼、PIC單片機、Search and Replace、二進制記數法、cps、89、諾依曼、unicode、計運算元網掩碼、IPv9、com、值項、Tripwire、Objective-C、Darwin、奇普密碼、機器語言
關於本詞條的評論(共3條):
·學過,忘了,所以來搜搜 吉林的向日葵 02-09 08:43
·有點不明白啊? 心願心 10-13 16:12
·二進制的數字系統,使用0或1這兩個符號來代表二進制數,計算機即是以二進制為架構的數字系統。----------------------------------------------------------------------------------------------------------d5yuansu
E. 數學里的進制有哪些
內容如下:
二進制是Binary,簡寫為B。
八進制是Octal,簡寫為O。
十進制為Decimal,簡寫為D。
十六進制為Hexadecimal,簡寫為H。
二進制數的特點:
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統。
數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。
F. 什麼是進制,誰能教我一下
生活中數學就是0-9的數字組成,0-9這樣的,稱為10進制,即逢十進一,相同,2進制就是逢二進一,8進制16進制20進制也是。
比如:二進制中計算1+1,用十進製表示:1+1=2,由於2大於1所以需要逢二進一:
1
+ 1
--------
= 10
10是2的二進制。
G. 高中數學,什麼是進制呀,二進制五進制,十進制,怎麼轉化呢,求詳細講解下,剛學不太懂
十進制轉二進制,我們用除二取余法。小數部分則用乘二取整法。
十進制數轉換為二進制數時,由於整數和小數的轉換方法不同,所以先將十進制數的整數部分和小數部分分別轉換後,再加以合並。
十進制整數轉換為二進制整數十進制整數轉換為二進制整數採用"除2取余,逆序排列"法。具體做法是:用2整除十進制整數,可以得到一個商和余數;再用2去除商,又會得到一個商和余數,如此進行,直到商為小於1時為止,然後把先得到的余數作為二進制數的低位有效位,後得到的余數作為二進制數的高位有效位,依次排列起來。
十進制小數轉換成二進制小數採用"乘2取整,順序排列"法。具體做法是:用2乘十進制小數,可以得到積,將積的整數部分取出,再用2乘餘下的小數部分,又得到一個積,再將積的整數部分取出,如此進行,直到積中的小數部分為零,此時0或1為二進制的最後一位。
在電腦中,這種除二取余法和乘二取整法,都是在電腦內部自動完成的,所以我們用電腦時,感覺不到它在用二進制進行計算。
希望我能幫助你解疑釋惑。
H. 進制是什麼意思
是進位計數制,是人為定義的帶進位的計數方法(有不帶進位的計數方法,比如原始的結繩計數法,唱票時常用的「正」字計數法,以及類似的tally mark計數)。
對於任何一種進制-X進制,就表示每一位上的數運算時都是逢X進一位。十進制是逢十進一,十六進制是逢十六進一,二進制就是逢二進一,以此類推,x進制就是逢x進位。
簡介
數值本身是一個數學上的抽象概念。經過長期的演化、融合、選擇、淘汰,系統簡便、功能全面的十進制計數法成為人類文化中主流的計數方法,經過基礎教育的訓練,大多數的人從小就掌握了十進制計數方法。
盤中放了十個蘋果,通過數蘋果我們抽象出來「十」這一數值,它在我們的腦海中就以「10」這一十進制編碼的形式存放和顯示,而不是其它的形式。從這一角度來說,十進制編碼幾乎就是數值本身。
I. 數學上說的進制數是什麼意思
日常生活中一般採用十進制數進行計數和計算,但十進制數難以在計算機內直接存儲與運算。在計算機系統中,通常將十進制數作為人機交互的媒介,而數據則以二進制數的形式存儲和運算。
J. 什麼是二進制、十進制
十進制數用0、1、2、3.........9 , 這十個數來表示。十進制(計數法)是以10為基礎數字系統, 是在世界上應用最廣泛的進位制。
即滿十進一,滿二十進二,以此類推;按權展開,第一位權為10^0,第二位10^1……以此類推,第N位10^(N-1),該數的數值等於每位位的數值*該位對應的權值之和。
世界上絕大多數古文明都是使用的十進制,古中國,古印度,古希臘等。當然也有例外,例如蘇美爾人使用十二進制,瑪雅人使用二十進制,古巴比倫人使用六十進制。
(10)什麼是數學進制擴展閱讀:
一般來說,數源於對物體的累計與計算,一個一個的數,就產生了自然數。今天,國際上最常使用的計數方法是十進制,它已經成為人們生活不可缺少的一部分。
十進制是古印度人發明的。從公元前2500到公元前1750年的哈拉帕文化時期開始,古印度人就採用十進制計數法。他們先是發明了1—9這九個數字元號和定位計數法,後又提出了零的理論和作為演算基點的十進制。
印度人之所以按「逢十進一」的規則進行運算,大概是因為當時他們用10個手指輔助計數。有了十進制,所需要的計數的單數僅為0,1,2,3……9。中亞許多民族都逐漸採用了這個簡便的計數方法。
後來,阿拉伯人征服印度,對印度的10個數字加以修改,傳到了歐洲,印度數字及其計算方式就逐漸演變成為現今世界通用的阿拉伯計數法了。
我國對計數方法的研究和使用也有悠久的歷史。從考古出土的陶片來看,早在五六千年前的原始社會,我國先民就已經掌握了30以內的自然數。
商代中期陶片和甲骨文中已經出現13個數字:分別是一、二、三、四、五、六、七、八、九、十、百、千、萬。
在長期的社會實踐中,人們發現不同位置的相鄰數字非常容易混淆,於是創造了縱式和橫式的計算方式。大約在公元前8世紀到公元前3世紀期間,也就是春秋戰國時代,我國出現了嚴格的十進位制。這是中國古代數學的一項偉大創造。一直到15世紀中葉,珠算成為主要的計算工具。