『壹』 如何講解小學數學應用題
如何上好小學數學應用題教學的課
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力
在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:
(一)培養學生解一般應用題時分析等量關系的能力
例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。
(二)培養學生解分數應用題時分析等量關系的能力
分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。
(三)培養學生列方程解應用題時分析等量關系的能力
列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。
二、注重培養學生列表或畫線段圖的能力
畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。
(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析
例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析
每天吃的千克數 天數 總千克數
計劃 2 8 0 ÷7 7 天 2 8 0 千克
實際 比計劃少吃5 千克 ? 天 2 8 0 千克
從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。
(二)分數、百分數應用題可以畫線段圖幫助分析
分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。
三、注重培養學生對比辨析的能力
對於易混、易錯的題目,有意識地設計一些似是
『貳』 六年級數學應用題解題基本思路
在做六年級數學應用題時遇到不會做的題目該怎麼辦呢?應用題有什麼解題思路呢?我在此整理了六年級數學應用題解題基本思路,供大家參閱,希望大家在閱讀過程中有所收獲!
分析法:分析法是從題中所求問題出發,逐步找出要解決的問題所必須的已知條件的思考方法。
綜合法:綜合法就是從題目中已知條件出發,逐步推算出要解決的問題的思考方法。
分析、綜合法:一方面要認真考慮已知條件,另一方面還要注意題目中要解決的問題是什麼,這樣思維才有明確的方向性和目的性。
分解法:把一道復雜的應用題拆成幾道基本的應用題,從中找到解題的線索。
圖解法:圖解法是用畫圖或線段把題目聽條件和問題明確地表示出來,然後“按圖索驥”尋找解答應用題的方法。
假設法:假設法就是解題時,對題目中的某些現象或關系做出適當的假設,然後,用事實與假設之間的矛盾中找到正確的解題方法。
注意事項
解題的方法有時候並不是一成不變的,這就需要我們從多個思維去考慮,找到最適合自己的那一種那麼就是最好的。
1.甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
總棵數是900+1250=2150棵,每天可以植樹24+30+32=86棵
需要種的天數是2150÷86=25天
甲25天完成24×25=600棵
那麼乙就要完成900-600=300棵之後,才去幫丙
即做了300÷30=10天之後即第11天從A地轉到B地。
2.有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
這是一道牛吃草問題,是比較復雜的牛吃草問題。
把每頭牛每天吃的草看作1份。
因為第一塊草地5畝面積原有草量+5畝面積30天長的草=10×30=300份
所以每畝面積原有草量和每畝面積30天長的草是300÷5=60份
因為第二塊草地15畝面積原有草量+15畝面積45天長的草=28×45=1260份
所以每畝面積原有草量和每畝面積45天長的草是1260÷15=84份
所以45-30=15天,每畝面積長84-60=24份
所以,每畝面積每天長24÷15=1.6份
所以,每畝原有草量60-30×1.6=12份
第三塊地面積是24畝,所以每天要長1.6×24=38.4份,原有草就有24×12=288份
新生長的每天就要用38.4頭牛去吃,其餘的牛每天去吃原有的草,那麼原有的草就要夠吃80天,因此288÷80=3.6頭牛
所以,一共需要38.4+3.6=42頭牛來吃。
兩種解法:
解法一:
設每頭牛每天的吃草量為1,則每畝30天的總草量為:10*30/5=60;每畝45天的總草量為:28*45/15=84那麼每畝每天的新生長草量為(84-60)/(45-30)=1.6每畝原有草量為60-1.6*30=12,那麼24畝原有草量為12*24=288,24畝80天新長草量為24*1.6*80=3072,24畝80天共有草量3072+288=3360,所有3360/80=42(頭)
解法二:10頭牛30天吃5畝可推出30頭牛30天吃15畝,根據28頭牛45天吃15木,可以推出15畝每天新長草量(28*45-30*30)/(45-30)=24;15畝原有草量:1260-24*45=180;15畝80天所需牛180/80+24(頭)24畝需牛:(180/80+24)*(24/15)=42頭
3.某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元
乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元
甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元
三人合作一天完成(5/12+4/15+7/20)÷2=31/60,
三人合作一天支付(750+400+560)÷2=855元
甲單獨做每天完成31/60-4/15=1/4,支付855-400=455元
乙單獨做每天完成31/60-7/20=1/6,支付855-560=295元
丙單獨做每天完成31/60-5/12=1/10,支付855-750=105元
所以通過比較
選擇乙來做,在1÷1/6=6天完工,且只用295×6=1770元
4.一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
把這個容器分成上下兩部分,根據時間關系可以發現,上面部分水的體積是下面部分的18÷3=6倍
上面部分和下面部分的高度之比是(50-20):20=3:2
所以上面部分的底面積是下面部分裝水的底面積的6÷3×2=4倍
所以長方體的底面積和容器底面積之比是(4-1):4=3:4
獨特解法:
(50-20):20=3:2,當沒有長方體時灌滿20厘米就需要時間18*2/3=12(分),
所以,長方體的體積就是12-3=9(分鍾)的水量,因為高度相同,
所以體積比就等於底面積之比,9:12=3:4
5.甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
把甲的套數看作5份,乙的套數就是6份。
甲獲得的利潤是80%×5=4份,乙獲得的利潤是50%×6=3份
甲比乙多4-3=1份,這1份就是10套。
所以,甲原來購進了10×5=50套。
6.有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
把一池水看作單位“1”。
由於經過7/3小時共注了一池水,所以甲管注了7/12,乙管注了5/12。
甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。
甲管後來的注水速度是1/4×(1+25%)=5/16
用去的時間是5/12÷5/16=4/3小時
乙管注滿水池需要1÷5/28=5.6小時
還需要注水5.6-7/3-4/3=29/15小時
即1小時56分鍾
繼續再做一種方法:
按照原來的注水速度,甲管注滿水池的時間是7/3÷7/12=4小時
乙管注滿水池的時間是7/3÷5/12=5.6小時
時間相差5.6-4=1.6小時
後來甲管速度提高,時間就更少了,相差的時間就更多了。
甲速度提高後,還要7/3×5/7=5/3小時
縮短的時間相當於1-1÷(1+25%)=1/5
所以時間縮短了5/3×1/5=1/3
所以,乙管還要1.6+1/3=29/15小時
再做一種方法:
①求甲管餘下的部分還要用的時間。
7/3×5/7÷(1+25%)=4/3小時
②求乙管餘下部分還要用的時間。
7/3×7/5=49/15小時
③求甲管注滿後,乙管還要的時間。
49/15-4/3=29/15小時
7.小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
爸爸騎車和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2
騎車和步行的時間比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分鍾
所以,小明步行完全程需要7÷3/10=70/3分鍾。
8.甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
乙車比甲車多行11-7+4=8分鍾。
說明乙車行完全程需要8÷(1-80%)=40分鍾,甲車行完全程需要40×80%=32分鍾
當乙車行到B地並停留完畢需要40÷2+7=27分鍾。
甲車在乙車出發後32÷2+11=27分鍾到達B地。
即在B地甲車追上乙車。
9.甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
甲車和乙車的速度比是15:10=3:2
相遇時甲車和乙車的路程比也是3:2
所以,兩城相距12÷(3-2)×(3+2)=60千米
10.今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
解法如下:(共12輛車)
本題的關鍵是集裝箱不能像其他東西那樣,把它給拆散來裝。因此要考慮分配的問題。
1、甲、乙兩個人同時從A、B兩地相向而行,甲每分鍾走100米,與乙的速度比是5∶4,5分鍾後,兩人正好行了全程的3/5,A、B兩地相距多少米?
2、一所小學擴建校舍,原計劃投資28萬元,實際投資比原計劃節省了 1/7,實際投資多少萬元?
3、玩具廠計劃生產游戲機2000台,實際超額完成 1/10,實際生產多少台?
4、一根電線長40米,先用去 3/8,後又用去 3/8米,這根電線還剩多少米?
5、某種書先提價 1/6,又降價 1/6,這種書的原價高還是現價高?
6、一本書共100頁,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少頁?
7、光明小學十月份比九月份節約用水 1/9,十月份用水72噸,九月份用水多少噸?
8、修一條公路,修了全長的 3/7後,離這條公路的中點還有1.7米,求這條公路的長?
9、光明小學有60台電腦,比五愛小學多 1/5,五愛小學有多少台電腦?
10、光明小學有60台電腦,比五愛小學少1/5,五愛小學有多少台電腦?
11、一袋大米兩周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,這袋大米共重多少千克?
12、小明讀一本書,已讀的頁數是未讀的頁數的3/2,他再讀30頁,這時已讀的頁數是未讀的7/3,這本書共多少頁?
13、飼養小組養的小白兔是小灰兔的3/5,小灰兔比小白兔多24隻,小白兔和小灰兔共多少只?
14、某漁船一天上午捕魚1200千克,比下午少1/7,全天共捕魚多少千克?
15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,還剩25/3千克,這桶油原有多少千克?
16、一條路已經修了全長的1/3,如果再修60米,就正好修了全長的一半,這條路長多少米?
17、牧場養牛480頭,比去年養的多1/5,比去年多多少頭?
18、一份材料,甲單獨打完要3小時,乙單獨打完要5小時,甲、乙兩人合打多少小時能打完這份材料的一半?
19、打掃多功能教師,甲組同學1/3小時可以打掃完,乙組同學1/4小時可以打掃完,如果甲、乙合做,多少小時能打掃完整個教室?
『叄』 如何解好小學數學應用題
應用題教學是小學數學教學的重要組成部分,他是培養學生綜合運用所學知識分析問題、解決問題的能力,是發展學生數學思維的最重要途徑.。因此,在教學中必須突出多讀、多思。讓學生在多讀,多思中發現問題、探索問題、掌握規律,提高解答應用題的能力。
下面我談談孩子們應該如何讀題?
(一)運用直觀媒體,理解應用題的題意,從當前教學中反映的問題來看,應注意讀題和直觀媒體緊密結合,依題解題,讀題要加強。不能一字一字地讀,也不要只讀一遍。要讀出停頓。如按標點符號停頓;按句子成分停頓;按內容的邏輯停頓。可多讀幾遍,在讀的過程中使用直觀媒體,幫助學生理解題內容,操作時可把一句句話和媒體正確對應,讀時可以圍繞難點,重點詞語,勾畫內容之間的聯系。 (二) 讀題後的思考
第一,思已知 就是讓學生在感知已知條件的基礎上,展開思維,「你聯想到了什麼?」它是學生讀懂題意,找到已知條件與問題聯系的途徑之一。例如:一個圓柱的側面展開是一個正方形,它的邊長是18.84厘米,這個圓柱的底面半徑是多少厘米?學生在讀完「一個圓柱的側面展開是一個正方形」時,就會聯想到它的底面周長等於高,也就是底面周長和高都等於這個正方形的邊長,從而實現了已知條件與問題的緊密聯系,有助於問題的解決。
第二,思問題 就是根據問題,展開思維,找到問題與已知條件的聯系。它是培養學生分析問題能力的有效方法之一。在教學中,我們可以從問題入手分析,學生根據自己已有的數量關系和生活經驗,找到要解決這個問題需要知道哪兩個條件,如果兩個條件都是未知的,下一步該怎麼做?這樣一步一步地分析,就能找到要求的問題。例如:甲乙兩車分別從相距420千米兩地同時出發,相向而行,經過6小時相遇,已知甲車每小時行40千米,乙車每小時行多少千米?要求乙車的速度,需要知道甲乙兩車的速度和與甲車的速度(或需要知道乙車行的路程和所行時間)。速度和是未知的,甲車的速度是已知的,因此要先求出速度和;而要求速度和?就要知道總路程和相遇時間,這兩者都是已知的,問題就解決了。 (三) 解題後在思考
第一,思多解 思多解不僅可以鍛煉學生的發散性思維,創新思維,而且可以培養學生綜合運用數學知識解決問題的能力。在教學中,不少的應用題客觀上存在著多種解法,我們應啟發學生一題多思,一題多解,在多解中比較各種解法的優點和缺點,選擇最佳解法。從而達到提高學生解題能力,培養學生良好思維品質的目的。
第二,思變通 應用題是千變萬化的,多練只會苦了學生,累了自己,精練才會事半功倍。「一題多變」就是精練的好方法之一,它不僅可以開闊學生的眼界,拓展學生的思維,提高學生的應變能力,而且可以防止學生思維的定勢。教師在設計作業時,將某一應用題的已知條件或問題變一變,讓學生對比練習,提高遷移能力。
第三,思規律 解題後,要啟發學生思考解題思路,不但要學生知道該怎麼做,而且還要知道為什麼這樣做,認真總結規律,以達到舉一反三的目的,這樣有利於強化知識的理解和運用,提高學生解答應用題的能力。
如何教好小學數學應用題
應用題的教學是小學數學教學中的一個難點,解答應用題的過程,其實就是分析、推導、綜合數量關系,由已知求出未知的過程。應用題的解答不僅要綜合運用小學數學中的概念、性質、意義、法則、公式等基礎知識,還要具有分析、判斷、推理、綜合等思維能力。所以,應用題教學不但可以鞏固知識,而且有利於培養學生初步的邏輯思維能力。那麼,如何進行應用題教學呢?為此,筆者經過不斷探索與實踐,精心設計了應用題七環教學法,收到了可觀的教學效果。
應用題七環教學法是在心理學理論和《數學課程標准》的指導下,根據應用題的特點,從應用題生活化的角度,針對應用題在小學中的地位,對應用題給師生帶來的困惑進行不斷的探索與研究得出的。它以學生為主體,以加強思維訓練、發展學生思維為重點,著眼於提高學生靈活解決實際問題的能力。其基本環節是:導→讀→思→說→記→找→研。現分述導
導,即導入新課,是老師有機連接各個環節的橋梁。其目的是為學生探究新知識指明方向,激發學生學習的積極性,把學生的注意力集中於新知識上,使學生全身心地投入學習。導的水平如何,將直接影響教學的成敗。因此,對這一環節的教學,教師千萬不可小覷,要引起高度的重視,不僅要讓導的內容與新知識緊密聯系在一起,使其有利於學生進行遷移類推,而且要密切聯系學生實際和現實生活,使學生感到既容易學,又有趣;
既有用,又有價值。為此,教學中,教師要注意導的方式,或者從學生的實際生活進行啟發,或者充分使用學具、教具進行設疑,或者運用課件,充分發揮多媒體的優勢吸引學生,或者環環相扣,以舊引新。總之,不論運用什麼方式,只要能達到導的目的,導得自然,一般來說,都是可取而有效的導入方式。 2、讀
讀,指讀題目,是應用題教學的重要環節,是學生自己感知信息數據的過程。讀,看起來是非常簡單的事,其實,要把應用題讀通、讀透,還是比較困難的。有的學生之所以做錯,其實主要原因之一就是由於讀題時走馬觀花,沒有讀懂。「書讀百遍,其義自見。」應用題也不例外。甚至可以這么說:「與其讓學生抄題目,不如讓學生多讀題目。」這當中的道理,就像讓學生抄不認識的字一樣,不論抄多少遍,學生還是同樣不認識、不理解。
讀,要講究一定的方式。在小學,大多數的學生讀題時都不注意停頓,語感非常差,使得數學意識低下,因而理解不透題意。教學中教師要給學生以讀的指導:可以朗讀,可以默讀;可以個人讀,也可以分組讀;還可以全班齊讀,形式不拘一格。此外,還要注意讀的語速。通常情況下,語速以稍慢為佳,以能准確感知信息數據及問題為標准。因此 ,讀的時候一定要全面、仔細,既不加字也不減字,對於較深的題目,甚至要咬文嚼字。這樣不僅能提高學生的數學意識,而且也使學生的感知能力得到了培養,同時也提高了學生捕捉信息數據的能力,為學生理解題意奠定了初步的基石。 3、思
思,指學生讀題後,思考題目中的已知條件和問題該如何表述,該把哪個量看作單位「1」,如何用線段圖描述題目,題目中有什麼樣的數量關系,可以用什麼方法來解答等,是培養學生思維能力的中心環節。學生思得如何,主要是看教師是否根據學生的經歷和思維水平,合理而充分利用可用的教學資源,使學生思維現實化。只要是上數學的老師,都很清楚地知道,一些學生,尤其是學困生,在掌握數學知識時,往往感到困難重重,其中重要的原因就是他們在解題過程中缺乏思維活動的自覺性與周密性。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。不但要留給學生充分思考的餘地,使學生主動而積極地產生遐想,引發思維的火花,而且要關注每一個學生的思維活動,為學生提供獨立思考的機會,對學生負責。切忌以教師的說講來代替學生的思,力求「實現不同的人在數學上都得到不同程度的發展」。
4、說
說,指學生用語言對自己的思考進行表達,屬於口頭動腦,是對題目的再理解,是最積極的思維表現。「人的思維,尤其是抽象思維,與言語密不可分。」「言語使思維更凝縮。」「語言是思維的工具,人們利用它進行各種思維活動。」可見,語言能促進思維的發展。說也是教師了解學生思維水平的重要手段。教師評價學生愛動腦筋,勤於思考,智商高等,主要就是從學生平時說的積極性這一角度來進行評價的。所以在教學過程中,教師要重視說的訓練,尤其是學困生,更應該激發他們說的慾望,使他們不僅僅是想說,而且是要說;給他們一個說的舞台,讓他們充分表現自己,體驗到成功的快樂。因此,說的時候應盡可能採用個人說的方式進行,以便更好地了解學生。此外,還要要重視說的依據,也就是根據什麼來說的。只有把依據弄得一清二楚,學生才能明白應用題是如何體現基礎知識點的,才能判斷自己思的結果是否正確。這樣不僅能讓學生更好地掌握和運用基礎知識,加深對應用題的理解,學會思的方法,而且能使學生正確認識自己,建立自信。 5、記
記,指將學生說的內容簡單明了地寫下來。就條件和問題來說,記的實質是對原題進行刪節、組裝、製作的過程,是對原題的一種精加工。就整個這一環節來說,記的目的是變復雜為簡單,加深記憶,強化理解,以便於學生觀察、分析和綜合運用。常言道:好記性不如爛筆頭。學生通過「讀」「思」「說」的訓練後,得到的材料往往是零亂的,因而運用時常常丟三落四。在現實生活中,應用題也並非要像書上那樣詳細地寫出來,而只需要進行簡單地記載即可。記,還是學生概括能力的表現之一。通過觀察記的內容是否完整簡潔,可以看出學生提練語言的水平。因此,教師有必要培養學生記的能力,尤其是較復雜的應用題,記就更有必要了。記,最好在草稿本上進行,當然,如果覺得有必要,也可以在作業本上進行,但一定要注意題目中具有隱蔽性的那種條件,記的時候應當把預設部分寫出來。
例如:「一個兒童體內所含的水分有28千克,占體重的4/5。這個兒童的體重是多少千克?」在這道題中,「占體重的4/5」是一個預設條件,應該把預設的部分「水分」補出來,記為「水分佔體重的4/5」只有這樣,才能為學生掃清第一道障礙。 6、找
找,指學生根據已知條件和問題,找出題目的突破口和單位「1」等,進而找出題目中
的數量關系(等量關系),屬於分析的過程。
突破口一般是一個比較難理解的句子,是學生理解題的攔路虎,通常是帶比、分數或幾倍等的語句。教師應當設法使學生找出這種句子進行理解。單位「1」是用來衡量的量,一般是緊接分數或幾倍前的那個量;有比時,通常是相比的幾個合起來的總量;或者就是題目中的總路程、總工作量等。總的說來,和誰進行比較,誰就是單位「1」。單位「1」是學生解答應用題的基礎之一。學生是否找准單位「1」,常常影響解題的對錯。因此,教學中,教師要要引導學生弄清用來比較的量,教給學生識別比較量的方法,以便找出單位「1」的量。值得注意的是有的題目中存在著兩個甚至三個單位「1」,解題時要注意單位「1」的統一。數量關系是應用題的靈魂,是學生解答應用題的前提和根本,也是學生解答應用題最大的困難。數學教學不僅要使學生了解人類關於數學方面的文化遺產,學到一定的數學知識,還要使學生學會用知識來認識事物,解決實際問題。因此,教師不僅要使學生能獲取數學基礎知識,而且要重視培養學生的數學意識和從具體題目中找數量關系的能力。只有找到正確無誤的數量關系,才能根據數量關系進行正確的解答。
找數量關系的方法有三種: ①對已知條件和問題逐一找; ②對已知條件和問題綜合找;
③明確單位「1」,畫線段圖找。畫線段圖時,一般是先任意畫一條線段來表示單位「1」的量,然後確定應該分的段數……單位「1」的量畫好了,再畫其他的量。
例如:「一條褲子的價格是75元,是一件上衣的2/3。一件上衣多少元?」在這道題中,「是一件上衣的2/3」是一個預設條件,是題目的突破口,應注意理解;應該把「上衣」看作單位「1」。學生這樣理解後,自然能找出「褲子單價=上衣單價×2/3」這一數量關系,或者畫出下面的線段圖,找出數量關系。 7、研
研,指學生根據信息數據,利用找到的基本數量關系及某一條件或問題,研究出其他的數量關系,也就是從不同的角度進行思考,靈活運用後學知識,嘗試多種多樣化的解題方法,是解題思維的拓展,能培養學生思維的靈活性。其具體做法可以是利用加減乘除各部分間的關系對數量關系進行變式,也可以是對題目中能進行轉換說法的條件(多數是
帶幾倍分數或比的條件)進行換說法,也就是運用多種方法表達所學知識,)3找出新的數量關系進行解答。
例如:「一個農場計劃在100公頃的地里播種大豆和玉米。播種面積的比是3:2。兩種作物各播種多少公頃?」本題中有一個明顯的數量關系:「大豆面積 玉米面積 = 100 」利用加法各部分間的關系,可以得到兩個數量關系:「大豆面積 = 100 - 玉米面積」和「玉米面積 = 100 - 大豆面積」。題目中的關鍵句是「播種面積的比是3:2」,也是一個預設條件,補完整就是「大豆面積與玉米面積的比是3:2,即,大豆面積:玉米面積=3:2 。對這一條件進行換說訓練,又可以得到以下說法和理解: ①玉米面積:大豆面積 = 2:3
②大豆面積是玉米面積的3/2(豆=玉×3/2;玉為單位「1」) ③玉米面積是大豆面積的2/3(玉=豆×2/3;豆為單位「1」)
④大豆面積比玉米面積多1/2〈 豆=玉 玉×1/2;豆=玉×(1 1/2);玉為單位「1」 〉 ⑤玉米面積比大豆面積少1/3 玉=豆-豆×1/3;玉 = 豆×(1-1/3);豆為單位「1」 ⑥大豆面積3份,玉米面積2份,共5份。
又如:「一張課桌比一把椅子貴10元,如椅子的單價是課桌的3/5。課桌、椅子各是多少元?」本題中的「 椅子的單價是課桌的3/5」這一條件也可以理解為「椅子單價:課桌單價=3:5」這樣又可以像上一例一樣進行探究,從而找出多種多樣的數量關系,這樣不僅加深了理解,豐富了解法,更有助於發展學生的思維。
總之,研究出的數量關系越多,「腦野」越開闊,思路越清析,解題方法越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於優秀學生的求知慾,使其在數學上得到更好的發展。
以上七個環節,並非是孤立的,每一環節都可能會有其他環節的相隨或參與。《數學課程標准》指出:學生是學習的主人,教師是數學教學的組織者,引導者與合作者。因此,在七環教學法中,教師要把握好自己的角色。提高學生解應用題的能力,是一個長期而復雜的過程,不能一蹴而就。教師要轉變思想觀念、教學方式和學習方式,經常以思為中心,讓說貫穿始終,充分調動學生感觀,使學生的腦、眼、口、手齊頭並進,勇於讓學生以合作交流等方式去主動探究。只有這樣,才能培養學生思維,拓寬解題思路。學生遇到應用題時,才能迎刃而解。
如何做好小學數學應用題教學
我們大家都知道,小學階段的學習是人的終身教育的起始站,學習數學不應僅僅是為了獲取有限的知識和技能。我們的教學更要注重讓學生學習自行獲取數學知識的方法,學習主動參與本領,獲得終身受用的可持續學習的發展性學力,即讓學生學會學習,為他們將來走向社會和終身學習打下基楚,由此,「以學生的發展為本」應是我們課堂教學的出發點和歸宿。
通過實踐教學獲得的經驗,我認為應用題難學的學生佔63%,很多學生家長也認為輔導子女學習應用題比較困難。存在這種現象的原因:一是題材內容不符合當地的實際情況,往往有些題型的內容在我們農村孩子從來都沒有見過或接觸過,也就是說現在教材中的應用題有許多內容脫離學生的實際生活,這就增加了學生對題目的理解缺乏興趣,缺少與其學科的聯系與溝通,從而影響到對其他學科的學習,教師只有普遍採用一問一答的講解;二是教學目標注重解題技能、解題技巧的訓練,忽視應用意識、應用能力及創新意識、創新精神的培養;。三是解法不活,解題思路不夠開闊,學生僅僅是模仿解題,沒有選擇的權利,沒有思考想像的機會,更沒有主動探究、創新思維的時間與空間。影響學生靈活運用知識。導致學生對應用題理解困難。四是應用題的呈現方式主要以城市為主,把農村的教育忽略,缺乏與農村知識的溝通,導致學生學得不明不白。教學模式單一,多為一例一練,應用性不強,學生學的時候好像明明白白,用的時候無從下手。因此,應用題的教學應該從上面這幾個問題去思考。從而增強應用題的應用味,提高學生解決實際問題的能力,提高應用題教學的效果。
如何使應用題更應生活化呢?我認為教師應該讓學生喜歡充滿樂趣的生活中的數學問題,所以有必要對教材中應用題的選材,作一下改編。例如教學相差關系的應用題時,老師提供給學生幾條信息:蘋果有20筐,梨子有12筐,蘋果比梨子多8筐。應該把「筐」改為「顆」或「個」就把學生帶入了身邊的情境中,讓學生感受到了數學就在身邊,使應用題有了「應用味」。?此外,應用題應具有多樣性和靈活性。多樣的、靈活的呈現應用題,能讓學生全面參與教學的過程,教師跟著學生的思路走,適時予以點撥,充分體現了學生學習的主體性。才能更有效的解決問題,既擴大農村孩子的眼界,又擴展孩子的知識面。這樣就能使得教育教學質量得到更好的提高。
如何教學應用題
小學三年級應用題是整數應用題的總結。在這一階段把整數應用題中的一般應用題和典型應用題作了一個全面的匯總。所以小學三年級應用題的教學是一個非常重要的階段,涉及一般應用題到典型應用題,從一步應用題到幾步應用題,這就要求學生掌握從普遍到特殊,從簡單到復雜的解答方法,也要求教師要幫助學生不斷地歸納、綜合,讓學生從已學習到的解題方法中找出規律,把握特點。
在小學三年級數學整數應用題的教學中,應注意抓住解答應用題的一般方法,教會學生解答應用題的切入點。我們知道解答一般思考應用題的方法是:問題〈--〉已知。解答過程是:1、讀題,2、分析,3、解答,[列式],4、檢查。而在教學實踐中,我覺得最難的是要教會學生把這個程有機的結合。於是,我就提出一些要求,讓學生知道解題過程中各個環節中應達到的目的,使學生有的放矢。例如在教學:「三年級一班栽樹40棵,二班栽的比一班多5棵。兩個班一共栽樹多少棵?」
這道應用題時,我就提出一系列的問題要學生思考:這道題說的什麼事?有幾個班栽樹?拿個班栽得多?「一共」是什麼意思?求「一共」用什麼方法?這一串問題使學生在思考的過程中把解題的方法也有機的結合起來。教會了學生怎樣去發現問題,提出問題,解決問題。也就教會了學生在不知不覺中運用從問題〈---〉已知的一般的解題方法。
小學三年級應用題中還涉及到許多典型應用題。如:路程除以速度=時間,總產量除以工效=工作時間,總產量除以單產量=數量,總價除以數量=單價。之所以把它們叫做典型應用題,是因為這類應用題有著極強的規律性。雖然這類應用題也可以用解答一般應用題的方法來解答,但如果學生把握到它的規律性,用它特有的典型關系式來分析、解答就會更加簡便。例如:商店有12箱水瓶,每箱5個,每個10元。著些水瓶一共可以賣多少元?(這道題是求總價,關系式是:總價=單價乘以數量)
這樣根據數量關系式就能輕松的解決這道題。當然一般典型應用題都不是一步的簡單應用題,這就要求學生要熟練地、准確地應用各種關系式子。在教學中教師要准確的定義關系式子中的一些慨念。如:「速度」,「單價」,「工效」等等。並列舉生活中有關慨念的例子,讓學生判斷、理解,逐步掌握、運用,以利於學生更好的解決典型應用題。
以上是我的一管之見,在大力實施素質教育的今天,學生素質的提高,有賴於教師素質的提高。希望我們不斷的研究教材,探索教法提高自身的素質,從而更好的貫徹素質教育。
如何教小學生解應用題
在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。
我認為應用題的教授一定要加強其思維的訓練,語言的訓練,這樣才能提高學生靈活解決實際問題的能力。所以我總結了以下幾個步驟:讀——劃——思——解,現分述如下,希望可以幫助學生更好的學習應用題。
1:讀
應用題是用語言表述的一類題型,對語言的理解能力要求非常高。因此,讀題便成為解應用題的一個重要環節是學生自己感知信息數據的過程。讀看起來很簡單,但數學應用題的讀並非泛泛而讀,它要求講究一定的方式,數學中的讀不講究抑揚頓挫、優美動聽,但需要用心、用腦、集中注意的讀,一般來講要讀三遍:第一遍初讀,對題目有初步印象;第二遍應逐字逐句的讀,重點理解每個詞、術語的實際含義;第三遍連貫起來讀,重點掌握題目的已知條件和所求問題。
例:星火煤廠上半年原計劃產煤6.6萬噸,實際每月比原計劃多產2.2萬噸,照這樣計算,完成上半年計劃需用幾個月?
在讀這個題目時需要通過大腦反映弄清四個問題: (1)這道題敘述的是哪個單位的什麼事?
(2)題目第一個條件是什麼?「上半年」和「原計劃」又是什麼? (3)題目第二個條件是什麼?關鍵詞是什麼?誰和誰比?比什麼?比的結果怎樣?
(4)問題是什麼?「照這樣計算」是什麼意思?
劃。顧名思義就是把什麼圈出來。這一步對小學生而言是無論如何都不能省略的,它是在讀完題後進行的,是在讀的基礎上進一步明確題意,抓住重點的關鍵。例如:在教《分數加減法》時,經常會遇到這樣的題目,一塊地公頃,其中種大豆, 種棉花,其餘種玉米,玉米的種植面積占這塊地的幾分之幾?
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出「幾分之幾」明白的告訴學生求的是一個分率,和 公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
思:
學生讀題後,獲取了一知和問題後,接下來就是在大腦中對這些信息進行加工,也就是思。一般來說,思有兩種思考方法:
(1)順著思考,即由已知——結論,從已知中獲取信息,一步步推出過程量,慢慢靠近所求結果:
例果園里有4行蘋果樹,每行18棵,還有2行梨樹,每行12棵,蘋果樹是梨樹的幾倍?
解:我們可以用圖把思考過程表示如下(順推) 已知
4行蘋果樹 2行梨樹 每行18棵每行12棵 蘋果樹總數 梨樹總數 蘋果樹是梨樹的幾倍?
(2)倒推法,即從問題入手——想要解決這個問題需要知道些什麼條件,這些條件是題目中的已知的,還是未知量,要知道這個未知量又需要什麼條件,需要什麼樣的數量關系來解決,直到在題目中找到已知:
同上例:執果溯因(倒推圖解) 問題: 蘋果樹是梨樹的幾倍? 蘋果樹有多少棵? 梨樹有多少棵? 4行蘋果樹 2行梨樹 每行18棵每行12棵
已知
綜上,思考應用題是培養學生思維能力的中心環節。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。要留給學生充分思考的餘地,為學生提供一個獨立思考的機會。
解,指的是學生的解答。或許學生認為這一部分他們是最會的。其實要把一道應用題完整的寫下來,讓老師給你滿分。同樣需要錘煉。學生需要把剛才思考的過程用數字的形式表示出來。在解應用題時,題目中沒有出現過的數學是不可以出現在題目中的,即使是顯而易見的數字也需要你進行一定的說明。這是數學的嚴謹性。所寫的式子,要讓別人看了也完全明白你的思路,這樣才是一個漂亮的式子。應用題寫的時候要注意:如果是方程,學生的解設就是不可或缺的。所列的方程未知數後面並不需要有單位名稱。但如果是一般的式子,單位名稱則需要寫上去。當然求比率、分率等是沒有單位名稱的。最後是寫上完整的答句。其實要完成一道應用題,每一個部分都不可以忽略。所以更需要學生通過前面的認真讀、仔細劃,努力想才能最終完整的寫完。
其實,要完成一道應用題,每一個部分都是不可忽略的,而做到以上步驟的前提是掌握基礎知識和各種基本用演算法則,這就需要教師在平時的教學中不斷訓練和督導,每講完一道題後,引導學生進行反思:對該類型題進行再分析、進一步解剖題干、挖掘其等量關系,並進一步總結;例如:「相遇問題」,題後思考總結:1、什麼樣的題目表述的是相遇問題?2、這類問題的等量關系是什麼?3、拿到這樣的題目該怎樣列式計算?4、它與「追及問題」有什麼異同等等?
總之,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。
『肆』 在小學數學中如何教給學生准確分析應用題的方法
在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。以下是我的幾點看法:
一、引導學生怎樣解應用題
1、認真閱讀題目。很多學生一直認為只有語文才需要一遍遍地讀。數學是一門很省力的科目,不需要怎麼花時間讀題的。其實這是個很大的誤區。數學是一門綜合性非常強的科目,對語言的理解能力要求相當高。同時讀題也是解決應用題的重要環節,是學生自己感知信息數據的過程。讀,看起來是非常簡單的事。但數學應用題的讀不是泛泛而讀,要求的是讀通、讀透。很多學生之所以做錯,其中最主要原因之一就是由於讀題時走馬觀花,完全沒有看懂題目問了什麼,很隨意的就開始動筆,這樣的結果往往是做錯了題目,甚至有的題目錯的非常的離譜,讓老師無法理解你是如何做出來的。「書讀百遍,其義自見。」應用題也不例外。甚至可以這么說:「與其讓學生抄題目,不如讓學生認真讀題目。」這當中的道理,就像讓學生抄不認識的字一樣,不論抄多少遍,學生還是同樣不認識、不理解。認真的讀題,不僅能提高學生的數學意識,而且也使學生的感知能力得到了培養,同時也提高了學生捕捉信息數據的能力,為學生理解題意奠定了初步的基石。
2、圈重點。在做應用題的時候一定要把重點的詞圈下來。這里所謂的重點詞並不是指同一個詞語,因為每個學生的理解能力不同,所以在他們眼中重點的詞也是完全不一樣的,有多有少,但不管怎麼,圈出的詞一定要為你做題服務。例如:在教《分數加減法》時,經常會遇到這樣的題目,一塊地共多少公頃,其中多少種大豆,多少種棉花,其餘種玉米,玉米的種植面積占這塊地的幾分之幾?
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出「幾分之幾」明白的告訴學生求的是一個分率,和公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
二、培養學生的想像能力。
在應用題教學中,必須採用「聯想法」引導學生進行推理、想像。可讓學生找出題中關鍵詞來引發聯想,由題中的一個詞語或數量想到與之有關的另一個詞語或數量,以弄清題中的數量關系。如:五年級同學要澆300棵樹,已經澆了180棵,剩下的分3次澆完,平均每次要澆多少棵?題中出現「要澆、已澆、剩下、3次、平均每次」等字眼,教學時可提示,引導學生進行推理想像,展開一個由「要澆」、「已澆」想到「剩下」,由「剩下」、「分3次」想到「平均每次」的合理想像過程。又如:一塊長方形的蘿卜地,長15米,寬6米。在這塊地里一共收蘿卜1350千克,平均每平方米收蘿卜多少千克? 解題時只要學生能從「長、寬」想到「周長」或「面積」,或由「平方米」想到「面積」(平方米是常用的面積單位),就能確定必須先求面積了。這樣,問題不就迎刃而解了嗎?
三、讓學生分析應用題常用的推理方法
教學過程中,教給學生分析應用題的推理方法,幫助學生明確解題思路至關重要。分析法和綜合法是常用的分析方法。所謂分析法,就是從應用題中欲求的問題出發進行分析,首先考慮,為了解題需要哪些條件,而這些條件哪些是已知的,哪些是未知的,直到未知條件都能在題目中找到為止。例如:甲車一次運煤300千克,乙車比甲車多運50千克,兩車一次共運煤多少千克?
指導學生口述,要求兩車一次共運煤多少千克?根據題意必須知道哪兩個條件(甲車運的和乙車運的)?題中列出的條件哪個是已知的(甲車運的),哪個是未知的(乙車運的),應先求什麼(乙車運的300+50=350)?然後再求什麼(兩車一共用煤多少千克,300+350=650)?
綜合法是從應用題的已知條件出發,通過分析推導出題中要求的問題。如上例,引導學生這樣想:知道甲車運煤300千克,乙車比甲車多用50千克,可以求出乙車運煤重量(300+50=350),有了這個條件就能求出兩車一共運煤多少千克?(300+350=650)。通過上面題的兩種解法可以看出,不論是用分析法還是用綜合法,都要把應用題的已知條件和所求問題結合起來考慮,所求問題是思考方向,已知條件是解題的依據。
四、培養學生多練習的習慣
多練即對學生進行多種形式的解應用題的訓練。練習中,教師要注意照顧全體,輔差培優,這樣既可穩定尖子生,又可提高中差等生。練習可分為課堂練習和課外練習。設計練習題時應恰當運用口答、板演、書面練習和動手操作等多種練習相結合的形式,注意「質」與「量」的有機統一,發揮每種練習的獨特作用,調動全體學生的積極性,培養學生的創新意識和實踐能力,從而達到開發學生智力,使練習收到實效。比如:既要設計一些選擇、改編、補充條件或問題等基本形式的練習,又要適當設計一些開放性練習。如答案不唯一,一題多變、一題多解、多餘條件、條件不夠等。讓他們在點點滴滴的進步中感受「成功」的喜悅,產生學習的成就感和自豪感,讓他們感受到學習數學的輕松與快樂。
五、引導學生學會「假設」
假設是指將題中的某一條件先假設為與其相近的另一條件,從而使問題的解答趨於簡單、明朗。如練習題:「一批煤,原計劃每天燒16噸,實際每天燒12噸,結果多燒5天。原計劃這批煤可以燒多少天?」假設實際燒煤的時間與原計劃燒煤的時間相同,則實際燒煤的總噸數要比原計劃燒煤的總噸數少12×5=60(噸)。總噸數差60噸的原因是什麼呢?因為實際比原計劃每天少燒16-12=4(噸),60噸里包含幾個4噸,就是原計劃燒煤的時間。根據實際少燒的噸數和實際少燒的時間,就能求出總噸數。
12×5÷(16-12)=15(天)
六、讓數學與生活相結合
我們應從課堂教學入手,聯系生活實際講數學,把孩子的生活經驗數學化,把數學問題生活化。如教學圖畫應用題時,可以編一道這樣的文字應用題:過春節了,爸爸買了一籃子又紅又大的蘋果共10個,給姥姥送去4個,還剩幾個?這樣似乎累贅,但很明顯學生感覺到四個蘋果是從籃子里拿出來的,拿出來即「去掉」,「去掉」就用減法,從10個里去掉4個,則用10減去4得6個。這比讓學生說籃子外面和裡面共有10個蘋果,籃子外有4個,求籃子里有幾個蘋果,讓學生列式計算效果要好得多。又如教學「小明要寫9個字,已經寫了6個,還要寫幾個?」這一道應用題時,教師就畫9個田字格,在6個格子中寫6個字,指著剩下的空田字格問學生「還要寫幾個」。寫一個字就相當於去掉了(手勢)一個格(因為這個格子寫過了就不能再寫了),寫6個字去掉了幾個格?去掉用什麼方法?這樣學生就很快地理解了,還要寫幾個用減法,用總數減去已經寫的個數。這樣的例子還很多,至於怎樣表述更有利於不同的學生理解,就在於教師對學生的了解程度及引導方式了。
總之,教無定法,作為一名數學老師,要從多方面引導學生,教導學生,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。
『伍』 數學的應用題有幾種方法
分析法:分析法是從題中所求問題出發,逐步找出要解決的問題所必須的已知條件的思考方法。
02、 綜合法:綜合法就是從題目中已知條件出發,逐步推算出要解決的問題的思考方法。
03、 分析、綜合法:一方面要認真考慮已知條件,另一方面還要注意題目中要解決的問題是什麼,這樣思維才有明確的方向性和目的性。
04、 分解法:把一道復雜的應用題拆成幾道基本的應用題,從中找到解題的線索。
05、 圖解法:圖解法是用畫圖或線段把題目聽條件和問題明確地表示出來,然後「按圖索驥」尋找解答應用題的方法。
06、 假設法:假設法就是解題時,對題目中的某些現象或關系做出適當的假設,然後,用事實與假設之間的矛盾中找到正確的解題方法。
例:冰箱廠生產一批冰箱,原計劃每天生產800台,而實際每天比計劃多生產了120台,結果比原計劃提前3天完成了任務。實際用了多少天?解法一:(800+120)×3÷120—3=20(天)(這是一種常規的解法);解法二:假設原計劃少生產3天,則共少生產了800×3=2400台冰箱。這時計劃生產的天數就等於實際生產的天數,造成少生產2400台的原因是每天計劃比實際少生產120台,所以實際生產天數為:2400÷120=20(天)即列式為:800×3÷120=20(天)。
07、 轉化法:轉化方法就是把某一個數學問題,通過數學變換,轉化成另一個數學問題來處理,然後把它解答出來的方法。
例:一輛貨車從甲城開往乙城需10小時,一輛客車從乙城開往甲城需6小時,兩車同時出發,相向而行,已知甲、乙兩城相距600千米,幾小時後兩車相遇?解法一:600÷(600÷10+600÷6)解法二:把兩地路程看作單位「1」,貨車的時速是1/10,客車的時速是1/6,依然是用路程除以速度和,得到相遇時間:1÷(1/10+1/6)
08、 倒推法(還原法):從條件的終結狀態出發,運用加與減、乘與除之間的互逆關系,從後向前一步一步地推算,從而解決問題的方法,稱為倒推法或還原法。
例:某倉庫貨物若干袋,第一次運出了1/3少4袋,第二次運出餘下的一半少2袋,庫中還剩106袋,倉庫原有貨物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找對應關系的方法:在某些數學題中,存在著一些相關的對應量,通過分析條件之間的某些數量的對應關系,實現未知向已知的轉化,這種思考方法,可稱為「對應法」。
例:一本書,第一天讀了32頁,第二天讀了40頁,剩下的頁數佔全書頁數的1/4。這本書還剩下多少頁沒有讀?(找出各相關對應量)
10、 替換法:「替換」就是等量代換。用一種量(或一種量的一部分)來代替和它相等的另一種量(或另一種量的一部分),從而減少問題中的數量個數,降低解題的難度,然後設法將這個被代換的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了餘下的3/7,第三天用的恰好是這桶油的一半。第二天和第三天共用油多少千克?(分析:6千克對應餘下1/7即1-3/7-3/7,找到這個對應關系,餘下的量正好是題目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 從變數中找不變數的解題方法:
(1) 變中有不變——和不變:例:甲、乙兩個施工隊共180人,從甲隊抽出自己人數的2/11調到乙隊後,兩隊人數則相等,求兩隊原來各有多少人?甲隊:180÷2÷(1—2/11)=110(人)
(2) 變中有不變——差不變:例:甲儲蓄2000元,乙儲蓄400元。如果從現在開始,每人每月各存200元,幾個月後甲儲蓄的錢數是乙儲蓄的錢數的3倍?(分析:甲比乙多儲蓄1600元,而這1600則剛好是乙幾個月後錢數的2倍,則列式為:【(2000—400)÷(3—1)—400】÷200=2(個))
(3) 變中有不變——某一部分量不變:例:要從含鹽16%的鹽水25千克中蒸發去一部分水,得到含鹽40%的鹽水,應當蒸發去多少千克水?(析:這道題的總量是鹽水的重量,它是由鹽和水兩個部分量組成。鹽水蒸發後,水的重量減少了,鹽水的總重量也隨它減少,濃度也隨著發生了變化。但要看到變中有不變,鹽的重量始終沒變,抓住鹽這個不變數入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 變中有不變——形變體不變:例:把一個長、寬、高分別為9厘米、7厘米、3厘米的長方體鐵塊和一個棱長5厘米的正方體鐵塊,熔鑄成一個圓柱體,這個圓柱體底面直徑為20厘米,高是多少厘米?(分析:形態雖然發生了變化,但是總體積卻沒有變化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年級上冊的組合圖形也可以用這種方法來分析。
12、 構造法:在計算某些圖形題時,把原來不易處理的,不規則的圖形,通過平移、旋轉、翻折後,重新構造成一個新的更便天處理的圖形為解決問題,這個思考方法,稱為構造法。
13、 列舉法:數量關系比較復雜,很難列出算式或方程求解。我們就要根據題目的要求,把可能的答案一一列舉出來,再進一步根據題目中的條件逐步排除非解或縮小范圍,進行篩選出題目的答案。
例:有一個伍分幣,4個個貳分幣,8個壹分幣,要拿8分錢,有幾種拿法?
14、 消去法:在一道數學題中,含有兩個未知數,在解題時,通過簡單的運算,先消去一個未知數,再求另一個未知數。這種解題的思考方法稱為消去法。
例:百貨商店裡,2支圓珠筆和3支鋼筆共值6元6角,3支圓珠筆和3支鋼筆共值7元2角。一支圓珠筆多少錢?
15、 設數法:有的題目含有某個不定的量,按照一般的解題思路,不易找出解題方法,如果我們把題目中某個不定量設定為具體的數,就可以使原題化抽象為具體,使難題變容易,這種解題的思考方法稱為設數法。
例:小華參加爬山活動,從山腳爬到山頂後,按原路下山,上山時每分鍾走20米,下山時每分鍾走30米,求小華上、下山的平均速度。(分析:根據「總路程÷時間=平均速度」題中沒有給出路程,可以設為600米。則列式為:600×2÷(600÷20+600÷30)=24(米/分))
『陸』 小學數學應用題的解題步驟和方法
小學數學10道經典應用題解題思路及答題
網路網盤鏈接:https://pan..com/s/1vUkp3x_qJYZqH5Y0E394hQ
提取碼:ae3g
若資源有問題歡迎追問~
『柒』 如何學好小學數學如何應用分析發解題
解答應用題一直是許多孩子做數學題的「心頭大患」,因為它既要綜合應用小學數學中的概念性質、法則、公式、數量關系和解題方法等最基本的知識
數量關系分析法
數量關系是指應用題中已知數量和未知數量之間的關系,只有搞清數量關系,才能根據四則運算的意義恰當的選擇演算法,把數學問題轉化為數學式子,通過計算進行解答。數量關系分析法分為三步:
(一)尋找題中的數量。
(二)明確各數量間的關系。
(三)解決各個產生的問題。下面以一道例題的教學從以下幾方面來談數量關系分析法的運用。
家長在家輔導孩子作業可以參考老師的引導方法教導孩子思考的角度和方法,養成孩子獨立思考、快速解答的好習慣:
如題:「學校舉行運動會,三年級有35人參加比賽,四年級參加的人數是三年級3倍,五年級參加的人數比三、四年級參加的總人數多12人,五年級參加比賽的有多少人?」
解題思路:
師:題中有幾個數量呢?
生:三個。
師:哪兩個數量之間有直接關系呢?
生:三年級有35人參加比賽,四年級參加的人數是三年級3倍。
師:這兩個數量間的關系讓我們頭腦中產生一個什麼問題呢?
生:四年級有多少人參加比賽?
師:怎樣列式解答這個問題呢?
生:用乘法35 ×3=105(人)。
師:現在又多了一個數量:四年級有105人參加比賽,那麼哪兩個數量間又存在關系呢?根據他們的關系可以產生一個怎樣的問題?
生:三年級有35人參加比賽,四年級有105人參加比賽。
問題是:三四年級參加比賽一共有多少人?
師:所以第二步算式怎樣列呢?
生:105+35=140(人)。
師:根據現在已經產生的數量,又有哪兩個數量間的關系存在呢?
生:三、四年級參加比賽一共有多140人,五年級參加的人數比三、四年級參加的總人數多12人。
師:這兩個數量間的關系能幫助我們解決什麼問題呢?
生:五年級參加比賽的有多少人?
師:那麼解決最後問題的算式怎樣列出呢?
生:140+12=152(人)
問題中心散射倒推法
所謂的「問題中心散射法」就是根據分析法這一思路模式,讓孩子從最後的問題出發,不斷地逆向推理,層層解決。
即從問題所要求的量開始探究,先要想一下,要知道所求的量,就必須知道的條件是什麼,要使這些條件成立,又必須具備另外哪些條件,這樣推究下去,直到所需要的條件都是題目中所給的已知條件時,問題就解決了。
還是以上面這一道應用題為例來談談吧。
解題思路:
師:這道題的問題是「五年級參加比賽的有多少人?」要想解決這個問題,在題裡面尋找那一句關鍵的信息提示呢?
生:五年級參加的人數比三、四年級參加的總人數多12人。
師:看來,現在要解決三、四年級參加比賽的總人數才是更關鍵的。那麼這個問題能一下子解決嗎?
生:不能,因為三年級參加比賽的人數知道了,可四年級參加比賽的人數不知道。
師:那麼四年級參加比賽的人數又怎麼求呢?根據題中的什麼數學信息呢?
生:三年級有35人參加比賽,四年級參加的人數是三年級3倍。列式是35 ×3=105(人)。
師:根據我們剛才的分析,接下來第二步求什麼/怎樣列式?
生:三、四年級參加比賽的總人數是多少?105+35=140(人)。
師:接下來呢?
生:五年級參加的人數是多少?140+12=152(人)
線段圖示助解分析法
運用圖示法解析應用題,是培養孩子思維能力的有效方法之一。圖示法不僅可以形象地、直觀地反映應用題的數量關系,啟發孩子的解題思路,幫助孩子找到解題的途徑,而且通過畫圖的訓練,可以調動孩子思維的積極性,提高孩子分析問題和解決問題的能力。
在解答應用題時,可以先把應用題中的已知條件和所求的問題用圖表示出來,然後通過圖去尋找解答應用題的方法。
除此之外還可以採用許多方法。如列表法、比較法、方程法等,注重教給孩子學習的方法,使孩子能逐步獨立地分析和解決問題。我們幫助孩子形成正確的思維規律,掌握了正確的思維方法,做到舉一反三,切實提高解答應用題的能力。
如下四種具體應用題題型詳解:
1.一般應用題
一般應用題沒有固定的結構,也沒有解題規律可循,完全要依賴分析題目的數量關系找出解題的線索。
要點:從條件入手?從問題入手?
從條件入手分析時,要隨時注意題目的問題
從問題入手分析時,要隨時注意題目的已知條件。
例題如下:
某五金廠一車間要生產1100個零件,已經生產了5天,平均每天生產130個。剩下的如果平均每天生產150個,還需幾天完成?
思路分析:
已知「已經生產了5天,平均每天生產130個」,就可以求出已經生產的個數。
已知「要生產1100個機器零件」和已經生產的個數,已知「剩下的平均每天生產150個」,就可以求出還需幾天完成。
2.典型應用題
用兩步或兩步以上運算解答的應用題中,有的題目由於具有特殊的結構,因而可以用特定的步驟和方法來解答,這樣的應用題通常稱為典型應用題。
A.求平均數應用題
解答求平均數問題的規律是:總數量÷對應總份數=平均數
註:在這類應用題中,我們要抓住的是對應關系,可根據總數量來劃分成不同的子數量,再一一地根據子數量找出各自的份數,最終得出對應關系。
例題如下:
一台碾米機,上午4小時碾米1360千克,下午3小時碾米1096千克,這天平均每小時碾米約多少千克?
思路分析:
要求這天平均每小時碾米約多少千克,需解決以下三個問題:
1、這一天總共碾了多少米?(一天包括上午、下午)。
2、這一天總共工作了多少小時?(上午的4小時,下午的3小時)。
3、這一天的總數量是多少?這一天的總份數是多少?(從而找出了對應關系,問題也就得到了解決。)
B.歸一問題
歸一問題的題目結構是:
題目的前部分是已知條件,是一組相關聯的量;題目的後半部分是問題,也是一組相關聯的量,其中有一個量是未知的。
解題規律:先求出單一的量,然後再根據問題,或求單一量的幾倍是多少,或求有幾個單一量。
例題如下:
6.台拖拉機4小時耕地300畝,照這樣計數,8台拖拉機7小時可耕地多少畝?
思路分析:
先求出單一量,即1台拖拉機1小時耕地的畝數,再求8台拖拉機7小時耕地的畝數。
3.相遇問題
指兩運動物體從兩地以不同的速度作相向運動。
相遇問題的基本關系是:
1. 相遇時間=相隔距離(兩個物體運動時)÷速度和
例題如下:兩地相距500米,小紅和小明同時從兩地相向而行,小紅每分鍾行60米,小明每分鍾行65米,幾分鍾相遇?
2. 相隔距離(兩物體運動時)=速度之和×相遇時間
例題如下:一列客車和一列貨車分別從甲乙兩地同時相對開出,10小時後在途中相遇。已知貨車平均每小時行45千米,客車每小時的速度比貨車快20%,求甲乙相距多少千米?
3. 甲速=相隔距離(兩個物體運動時)÷相遇時間-乙速
例題如下:一列貨車和一列客車同時從相距648千米的兩地相對開出,4.5小時相遇。客車每小時行80千米,貨車每小時行多少千米?
相遇問題可以有不少變化。
如兩個物體從兩地相向而行,但不同時出發;
或者其中一個物體中途停頓了一下;
或兩個運動的物體相遇後又各自繼續走了一段距離等,都要結合具體情況進行分析。
另:相遇問題可以引申為工程問題:即工效和×合做時間=工作總量
4.工程問題
工程問題是研究工作效率、工作時間和工作總量的問題。
題目特點:
工作總量沒有給出實際數量,把它看做「1」,工作效率用來表示,所求問題大多是合作時間。
例題如下:
一件工程,甲工程隊修建需要8天,乙工程隊修建需要12天,兩隊合修4天後,剩下的任務,有乙工程隊單獨修,還需幾天?
思路分析:
把一件工程的工作量看作「1」,則甲的工作效率是1/8,乙的工作效率是1/12。
已知兩隊合修了4天,就可求出合修的工作量,進而也就能求出剩下的工作量。
用剩下的工作量除以乙的工作效率,就是還需要幾天完成。
『捌』 怎樣解小學數學應用題
如何解好數學應用題
在小學數學教學中,應用題的教學佔有重要地位。如何教好這部分知識,下面談談我的一些做法和體會。
一、培養學生的審題習慣 細致地審題,弄明白題意,是准確解答應用題的先決條件。因此,在教學中可先讓學生根據解題要求找出題中直接條件和間接條件,構建起條件與問題之間的聯系,確定數量關系。為了便於分析問題中的已知量與未知量之間的相依關系,審題時可要求學生邊讀題邊思考,用不同的符號劃出條件和問題或用線段圖把已知條件和所求問題表示出來。
為了培養兒童細致審題的習慣,我常把一些容易混淆的題目同時出現,讓學生分析計算。例如:①圖書室的科技書與故事書共3000冊,科技書的冊數是故事書的2/3,有科技書多少冊? ②圖書室有故事書3000冊,科技書冊數是故事書的2/3,有科技書多少冊? 題①中3000冊為共有數,題②中3000冊是一種的,因此計算方法不相同。經常進行此類練習,就容易養成認真審題的習慣。
二、教給學生分析應用題常用的推理方法 在解題過程中,學生往往習慣於模仿教師和例題的解答方法,機械地去完成。因此,教給學生分析應用題的推理方法,幫助學生明確解題思路至關重要。分析法和綜合法是常用的分析方法。所謂分析法,就是從應用題中欲求的問題出發進行分析,首先考慮,為了解題需要哪些條件,而這些條件哪些是已知的,哪些是未知的,直到未知條件都能在題目中找到為止。例如:甲車一次運煤300千克,乙車比甲車多運50千克,兩車一次共運煤多少千克? 指導學生口述,要求兩車一次共運煤多少千克?根據題意必須知道哪兩個條件(甲車運的和乙車運的)?題中列出的條件哪個是已知的(甲車運的),哪個是未知的(乙車運的),應先求什麼(乙車運的300+50=350)?然後再求什麼(兩車一共用煤多少千克,300+350=650)? 綜合法是從應用題的已知條件出發,通過分析推導出題中要求的問題。如上例,引導學生這樣想:知道甲車運煤300千克,乙車比甲車多用50千克,可以求出乙車運煤重量(300+50=350),有了這個條件就能求出兩車一共運煤多少千克?(300+350=650)。通過上面題的兩種解法可以看出,不論是用分析法還是用綜合法,都要把應用題的已知條件和所求 問題結合起來考慮,所求問題是思考方向,已知條件是解題的依據。
三、對易混淆的問題進行對比分析 對一些有聯系而又容易混淆的應用題可引導學生進行對比分析,例如:求一個數的幾分之幾與已知一個數的幾分之幾是多少,求這個數的應用題,學生往往容易混淆。一是他們分不清是用乘法還是用除法;二是分不清計算時需不需要加括弧。因此,可安排下列一組題進行對比教學。 ①果園里有梨樹240棵,蘋果樹占梨樹的1/3,有蘋果樹多少棵? ②果園里有梨樹240棵,占蘋果樹的1/3,有蘋果樹多少棵? ③果園里有梨樹240棵,蘋果樹比梨樹少1/3,有蘋果樹多少棵? ④果園里有梨樹240棵,比蘋果樹少1/3,有蘋果樹多少棵? ⑤果園里有梨樹240棵,蘋果樹比梨樹多1/3,有蘋果棵多少棵? ⑥果園里有梨樹240棵,比蘋果樹多1/3,有蘋果樹多少棵? 兩數相比較,以後面的數為標准數,前面的數為比較數,即與誰相比誰為標准數(通常設標准數為1)。已知一個數,求它的幾分之幾是多少與已知一個數的幾分幾之是多少,求這個數。這兩類應用題的相同點是:都知道比較數占標准數的幾分之幾;不同點是:前者是已知標准數求比較數,後者是已知比較數求標准數。題①、③、⑤都是蘋果樹與梨樹相比較,梨樹的棵數為標准數,蘋果樹的棵數為比較數,梨樹的棵數已經知道,因此,它們屬於前類用乘法。題②、④、⑥都是梨樹與蘋果樹相比較,蘋果樹的棵數為標准數,梨樹的棵樹為比較數,蘋果樹的棵數為標准數,梨樹的棵數為比較數,蘋果樹的棵 數題目中都不知道,因此,它屬於後類用除法。題①、②中比較數占標准數的幾分之幾已經知道,計算時不用「括弧」,題③、④、⑤、⑥中比較數占標准數的幾分之幾不知道,需由1加幾分之幾和1減幾分之幾求得,因此計算時需加「括弧」。
四、要引導學生自編應用題 讓學生了解應用題的結構,重視自編應用題的教學,是提高解題能力的重要環節。在低年級進行簡單應用題教學時,就讓學生了解一道應用題總題由已知條件和所求問題兩部分組成,因此,可進行填空練習。 如:(1)學校舉行運動會有女運動員153人,男運動員比女運動員多37人,?(補問題) (2)學校舉行運動會,有女運動員153人,,一共有多少人?(補合適條件) 在高年級要引導學生自編應用題,通過自編,使學生認識和掌握各類應用題的結構特點。如: 1、按指定算式編題:如按算式240×1/3=?編一道應用題。 2、把一種應用題改編成另一種形式的應用題:如我班有45名學生,女生佔2/5,女生有多少人?把它改編成一道已知一個數的幾分之幾是多少,求這個數的應用題。 3、指定題目類型編題,如編道反比例應用題。如何教孩子解小學數學應用題? 羅漢中心小學 李寅 我這里的方法已經經過我侄女的檢驗,我從她小學四年級開始用這種方法教她,並說這種方法可以讓她受用到初一。一般來說,女孩子的邏輯思維比較差,數學對她們來說是難點,但正因為我這種方法的作用使她的數學一直能在班上名列前茅,她自己也多次說過要感謝我這種方法。
現在我侄兒又讀小學四年級了,他又開始問我這方面的數學題,我又開始用這種方法來教我侄兒,下面的兩題是他今晚問的我,我以這兩題為例來談談我的方法。
題一:某商場的女職工比男職工多60人,女職工人數是男職工的3倍,這個商場有男女職工各多少人? 題二、父親比兒子的年齡大27歲,4年後父親的年齡是兒子年齡的4倍,父親現在多少歲? 我跟我侄兒講,你把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「的幾倍」看作「×幾」。然後用文字根據題意一步一步的列出關系式。
比如題一中的,「女職工比男職工多60人」可以寫成「女職工=男職工+60人」,簡寫成「女=男+60」;「女職工人數是男職工的3倍」可以寫成「女職工人數=男職工×3倍」,簡寫成「女=男×3」。這樣我們就輕輕鬆鬆的列出了題一中的兩個關系式: 女=男+60 (1) 女=男×3 (2) 然後再教他將(2)代入(1)可得: 男×3=男+60 (3) 然後再教他等式兩邊同時減去一個相同的數——「男」,可得: 2男=60 (4) 解得: 男=30 (5) 然後將(5)代入(1)或(2),可得: 女=90 (6) 這樣題目就輕輕鬆鬆的跟他講清楚了。題二隻是稍作了點變動,講法類似。 我這種方法有兩個要點: 一是,把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「倍」看作「×」。 二是,用文字列數學關系式。 其實小學數學應用題難就難在這兩點,一是題意不好理解,他們有時搞不清「多」、「大」應該是「+」,還是「-」;「少」、「小」應該是「-」,還是「+」;「的幾倍」應該「×」,還是「÷」;「比」、「是」前後的未知量搞顛倒。 二是他們沒學過代數,或只學過解一個未知數——「x」的方程,不會列關系式。如果我們教他們設未知量為「x」、「y」、「z」,他們會非常不理解,難以接受。但我們如果直接用題目中的文字列數學關系式(即,直接用題目中的「父親」、「兒子」、「女職工」、「男職工」等當未知量列數學關系式)的話,他們就能非常自然的理解。然後再教他們簡單的解方程的技巧,而小學數學應用題的方程解法一般都很簡單。 我這種方法的要點二——「用文字列數學關系式」,可以說是數學應用題的算數解法到代數解法的中間過渡階段,然而我們小學數學應用題的教學中缺少了這一環。正是因為缺少了這一環,導致我們的老師很難跟學生講清楚這類數學應用題的算數解法的理由和求解過程,導致我們的學生很難理解一些算數解法,不僅學生難以理解,就連我們這些作為「大人」的家長其實也常常難以理解。而我們的家長面對孩子們問這類題目時,用初一的代數方法很容易解出,卻很難講清楚算數方法,而列出的算數方法通常也是根據代數方法的解法演變過來的,即在用代數方法求解「x」、「y」的過程中不進行演算,而只進行推導,將最後的推導作為算數解法。
而用我這上面的方法向孩子講解,可以讓孩子有一個從算數解法到代數解法的適應過程。 其實我們小學數學應用題的教學過程的最大敗筆就是缺少了「用文字列數學關系式」這一環,非要學生用算數方法很難解,但用代數方法很容易求解的題目。這完全是折磨學生的一種教學方法,卻美其名為鍛煉孩子的邏輯思維能力。孩子的邏輯思維能力不是這個鍛煉法,而是應該讓孩子有一個,從算數方法到文字方法,再到代數方法的一個層層遞進的過程。我這種方法就是在受到了小學數學應用題的演算法解法的折磨過程,並在初一學習了代數方法後悟出來的一個方法。 我這里呼籲各位家長和老師用這種方法向您的孩子教學,以彌補我們小學數學教育的一個重大缺陷,更希望教育部能夠接受這種方法讓它能夠走進課堂,以減少對我們的孩子和家長的折磨。如何教孩子解小學數學應用題? 羅漢中心小學 李寅 我這里的方法已經經過我侄女的檢驗,我從她小學四年級開始用這種方法教她,並說這種方法可以讓她受用到初一。一般來說,女孩子的邏輯思維比較差,數學對她們來說是難點,但正因為我這種方法的作用使她的數學一直能在班上名列前茅,她自己也多次說過要感謝我這種方法。 現在我侄兒又讀小學四年級了,他又開始問我這方面的數學題,我又開始用這種方法來教我侄兒,下面的兩題是他今晚問的我,我以這兩題為例來談談我的方法。 題一:某商場的女職工比男職工多60人,女職工人數是男職工的3倍,這個商場有男女職工各多少人? 題二、父親比兒子的年齡大27歲,4年後父親的年齡是兒子年齡的4倍,父親現在多少歲? 我跟我侄兒講,你把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「的幾倍」看作「×幾」。然後用文字根據題意一步一步的列出關系式。 比如題一中的,「女職工比男職工多60人」可以寫成「女職工=男職工+60人」,簡寫成「女=男+60」;「女職工人數是男職工的3倍」可以寫成「女職工人數=男職工×3倍」,簡寫成「女=男×3」。這樣我們就輕輕鬆鬆的列出了題一中的兩個關系式: 女=男+60 (1) 女=男×3 (2) 然後再教他將(2)代入(1)可得: 男×3=男+60 (3) 然後再教他等式兩邊同時減去一個相同的數——「男」,可得: 2男=60 (4) 解得: 男=30 (5) 然後將(5)代入(1)或(2),可得: 女=90 (6) 這樣題目就輕輕鬆鬆的跟他講清楚了。題二隻是稍作了點變動,講法類似。 我這種方法有兩個要點: 一是,把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「倍」看作「×」。 二是,用文字列數學關系式。 其實小學數學應用題難就難在這兩點,一是題意不好理解,他們有時搞不清「多」、「大」應該是「+」,還是「-」;「少」、「小」應該是「-」,還是「+」;「的幾倍」應該「×」,還是「÷」;「比」、「是」前後的未知量搞顛倒。 二是他們沒學過代數,或只學過解一個未知數——「x」的方程,不會列關系式。如果我們教他們設未知量為「x」、「y」、「z」,他們會非常不理解,難以接受。但我們如果直接用題目中的文字列數學關系式(即,直接用題目中的「父親」、「兒子」、「女職工」、「男職工」等當未知量列數學關系式)的話,他們就能非常自然的理解。然後再教他們簡單的解方程的技巧,而小學數學應用題的方程解法一般都很簡單。 我這種方法的要點二——「用文字列數學關系式」,可以說是數學應用題的算數解法到代數解法的中間過渡階段,然而我們小學數學應用題的教學中缺少了這一環。正是因為缺少了這一環,導致我們的老師很難跟學生講清楚這類數學應用題的算數解法的理由和求解過程,導致我們的學生很難理解一些算數解法,不僅學生難以理解,就連我們這些作為「大人」的家長其實也常常難以理解。而我們的家長面對孩子們問這類題目時,用初一的代數方法很容易解出,卻很難講清楚算數方法,而列出的算數方法通常也是根據代數方法的解法演變過來的,即在用代數方法求解「x」、「y」的過程中不進行演算,而只進行推導,將最後的推導作為算數解法。 而用我這上面的方法向孩子講解,可以讓孩子有一個從算數解法到代數解法的適應過程。 其實我們小學數學應用題的教學過程的最大敗筆就是缺少了「用文字列數學關系式」這一環,非要學生用算數方法很難解,但用代數方法很容易求解的題目。這完全是折磨學生的一種教學方法,卻美其名為鍛煉孩子的邏輯思維能力。孩子的邏輯思維能力不是這個鍛煉法,而是應該讓孩子有一個,從算數方法到文字方法,再到代數方法的一個層層遞進的過程。我這種方法就是在受到了小學數學應用題的演算法解法的折磨過程,並在初一學習了代數方法後悟出來的一個方法。 我這里呼籲各位家長和老師用這種方法向您的孩子教學,以彌補我們小學數學教育的一個重大缺陷,更希望教育部能夠接受這種方法讓它能夠走進課堂,以減少對我們的孩子和家長的折磨。 1 方程與不等式的應用題教案
一、〖知識點〗 列方程(組)解應用題的一般步驟、列不等式(組)解應用題、應用問題的主要類型
二、〖大綱要求〗能夠列方程(組)解應用題、列不等式(組)解應用題
三、內容分析列出方程(組)解應用題的一般步驟是: (i)弄清題意和題目中的已知數、未知數,用字母表示題目中的一個(或幾個)未知數; (ii)找出能夠表示應用題全部含義的一個(或幾個)相等關系; (iii)根據找出的相等關系列出需要的代數式,從而列出方程(或方程組); (iv)解這個方程(或方程組),求出未知數的值; (v)寫出答案(包括單位名稱)小學五年級數學《分數應用題》教學設計
『玖』 怎樣用逆向思維法解答小學數學應用題
當你在縱橫交錯的道路中找不到出口時,你會怎麼辦呢?有些聰明的同學常常會反其道而行之,從出口倒回去找入口、然後再沿著自己走過的路返回來。由於從出口返回時,途徑單一,很快就會找到入口,然後再由原路退回,走出迷宮自然就不難了。解應用題也是這樣,有些應用題用順向推理的方法很難解答,如果從問題的結果出發,從後往前逐步推理,問題就很容易得到解決了。這就是逆向思維法,即首先確定你要達到的目標,然後從目標倒過來往回想,直至你現在所處的位置,弄清楚一路上要跨越哪些關口或障礙、是誰把守著這些關口。由於這種思維方法不同於常規,因此往往能出奇制勝,取得意想不到的效果。把這種思維方法用在小學數學應用題的解答中主要有兩種:一是逆向分析法,二是逆向推導法。 1、逆向分析法 逆向分析法就是從求解的問題人手,正確選擇所需要的兩個條件,如果解題所需要的兩個條件(或其中的一個條件)是未知的,就要分別求解找出這兩個(或一個)條件,然後依次推導,逐層分析清楚要解決這個問題需要哪些條件,一直到所需要的條件都是已知的為止。這條分析鏈中的最後一步就是解題的第一步,然後,由此逐步返回,最後列出正確的算式,解決問題。逆向思維法尤其適於解答數量關系比較復雜的應用題。 這道題的分析思路如下面所示: 實際比原計劃少用多少天 原計劃生產的天數、實際生產的天數 生產零件的總個數、實際每天加工的零件個數 原計劃每天生產零件的個數 原計劃生產的天數 要知道實際比原計劃少用多少天,就必須用原計劃生產的天數減去實際生產的天數。原計劃生產的天數題目中已知,實際生產的天數未知,要求出實際生產的天數,就必須要知道生產零件的總個數和實際每天加工的零件個數兩個條件,因為生產零件的總個數÷實際每天加工的零件個數=實際用多少天完成生產任務。實際每天加工的零件個數這個條件題目已經告訴了我們,而生產零件的總個數未知。進一步推導,生產零件的總個數=原計劃每天生產零件的個數×原計劃生產的天數,這兩個條件都在題目中出現了,因此,求生產零件的總個數就是我們解題的第一步。可列出算式:2000x10=20000(個)。第二步就可以算出實際生產的天數。列出算式如下:20000÷2500=8(天)。第三步就可以求出實際比原計劃少用多少天,算式為:10-8=2(天)。綜合列式為:10-2000x10÷2500=2(天)。因此,實際比原計劃提前2天完成了這批生產任務。 2、逆向推導法 當應用題的已知條件是原數經過若干次變化的結果時,就其解法與前面講的幾種方法就不一樣了。解這類應用題,首先得搞清楚原數經過幾次變化,是經過怎樣的變化。也要知道變化的結果是多少,然後,才能以結果為線索,照原題的相反意思還原。這里講的相反意思是什麼呢?原數的變化如果是輸入。那麼,還原的結果就是輸出。原數的運算是加法或乘法。那麼、還原的運算就是減法或除法。由結果逆推,得到原數的解題方法,就是逆推法,或稱還原法。 解析:本題中,商場原有電視機台數是原數。該原數根據題意,經過了三次變化。第一次變化是上午賣出電視機30台;第二次變化是中午從廠家運來50台;第三次變化是下午又賣出15台。原數是經過這三次變化,才成為72台的。 從上圖可以清楚地看出逆推法的過程: 第一步:商場現有電視機72台,那麼,在賣出15台以前,應有電視機多少台呢?可用加法計算,得:72+15=87(台)。 再逆推第二步:在運來50台之前,商場里的電視機是多少台呢?用減法計算,得:87-50=37(台)。由此可知,在運來50台之前,商場里的電視機有37台。但問題並沒有得到最後解決,因為商場上午還賣出電視機30台,所以還要逆推一步。 逆推第三步:商場上午賣出30台之前,有電視機多少台?這就是商場原有電視機的台數。用加法計算得:37+30=67(台)。 綜合算式為:72+15-50+30=67(台)。 對於同學們來說,學會了逆向思維法,不僅能增加一種解題方法,而且對培養逆向思維推理能力,也有著積極意義。值得注意的是,剛開始學慣用逆向思維法解應用題時,一定要畫思路圖,當對逆向思維法的解題方法已經很熟悉時,可不再畫思路圖,而直接分析解答應用題了。