『壹』 做數學證明題有什麼好方法嗎
我個人數學算是比較好的。淺談一下,數學證明題在考試中是最最最容易拿分的題目。很多人覺得不好做或者沒有好的方法去解答,是因為有這么一個誤區在裡面。
證明題切記一句話,很重要,不能用未知證已知。乍看下像是一句廢話,但實際很實用。一個證明題目中,可以分成兩部分,已知條件(這點就要自己細心分析了,包括基礎知識的變形啊、基本功啊、數學模型建模啊等)和求證結論。思路上可以倒著來推到結論,但證明過程一定要正著寫,就是用已知的真理、已知結論來推導出來,不管是不是廢話,是不是眾所周知的公理,只要不是題目給出的條件,就必須寫出來推導過程,這是拿分要點。
其次說一說思路怎麼來。一般要證明的東東比較不容易看出來,這個時候要到倒著來推導,先用題目給出的結論去推導題目的條件,切記,這個是思路!!比較容易得到中間它需要考察到你的關鍵知識點,一些定理變形雲雲。。如果是幾何題目就更容易找到思路,基本就是默認求證是正確的,然後需要一條或幾條關鍵的輔助線,這個就需要積累了,都是有規律的。 總之,思路要逆向來推導,先假設求證正確,反向推到已給條件,畫出輔助線,求出輔助定理。。證明過程一定要用題目給出的條件一步步來正明。
『貳』 數學證明題的八種方法是什麼
1、分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等。
結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
2、逆推法從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。
3、換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數。有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。
『叄』 初中數學證明題解題格式
證明三角形全等就是初中證明題的其中一個部分。步驟有三步。
1、通讀這個話題中的題目, 熟悉問什麼的問題,然後拿著問題去看圖形, 隨便把已知的條件放在圖表裡,一目瞭然 。
(3)如何寫數學證明題擴展閱讀
初中數學證明題解題格式:牢記幾何語言
首先,從幾何第一課起,就應該特別注意幾何語言的規范性,理解並掌握一些規范性的幾何語句。如:「延長線段AB到點C,使AC=2AB」,「過點C作CD⊥AB,垂足為點D」,「過點A作l‖CD」等,每一句通過上課的教學,課後的輔導,手把手的作圖,表達幾何語言;表達幾何語言後作圖,反復多次,讓學生理解每一句話,看得懂題意。
其次,要注意對幾何語言的理解,幾何語言表達要確切。例如:鈍角的意義是「大於直角而小於平角的叫鈍角」,「大於直角或小於平角的角叫鈍角」,把「而」字說成了「或」字,這就是學習對幾何語言理解不佳,造成的表達不確切。
「一字之差」意思各異,在輔導時,注重語言的准確性,對其犯的錯誤反復更正,做到學習之初要嚴謹。
『肆』 做數學證明題的思路是什麼,過程怎麼寫
1. 弄清題意
如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵。命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論
2、根據題意,畫出圖形。
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。並且把題中已知的條件,能標在圖形上的盡量標在圖形上。
3. 根據題意與圖形,用數學的語言與符號寫出已知和求證。
眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示。
4. 分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考。
(2)逆向思維。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路。
5. 根據證明的思路,用數學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上。這個過程,對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據!
6. 檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵。最後,同學們在平時練習中要敢於嘗試,多分析,多總結。才能做到熟能生巧!
『伍』 數學證明題怎麼做
以下採用代數法來解答這個問題。
為了計算方便,不妨設BD=2,CD=4,BC=2a, AB=b,
【1】先算出a與b的關系式
根據等腰三角形性質,cosB=a/b
又,在ΔDBC中,利用餘弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
則,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表達出cos∠ADE
在ΔDBC中,利用餘弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】轉化命題,並進行證明
延長ED至F,使得DF=DA,連接AF
則∠ADE=2∠F,如果能證明∠F=∠AED,則命題得證
也就是要證明AF=AE
令∠ADE=γ
在ΔADF中,利用餘弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用餘弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
顯然,AF=AE
故,命題得證
『陸』 初中數學證明題技巧 如何做數學證明題
1、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
*12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
2、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
3、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
4、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
5、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
6、證明 角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
7、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
8、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
*4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
9、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
10、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓
『柒』 如何寫證明題的步驟方法
(1)理解題意:分清命題的條件(已知),結論(求證);
(2)根據題意,畫出圖形;
(3)結合圖形,用符號語言寫出「已知」 和「求證」 ;
(4)分析題意,探索證明思路(由「因」 導「果」 , 執「果」 索「因」 );
(5)依據思路,運用數學符號和數學語言條理...」
『捌』 如何做數學證明題方法
做證明題要練就一定的步驟和思路.首先認真讀題,題干中的每個重要條件都要讀得很懂.做輔助線也很關鍵,有時一道題能否解答出來或者解題時間都很大程度上依賴於輔助線的做法.基礎理論知識也需夯實.另外需要特別注意要求證的結論.從結論出發,結合已掌握的理論知識,去尋找方法.解題步驟往往和思維路徑是相反的.不要為了做題而做題,一定要善於總結方法和題型.這樣才能保證以後遇到的題目,拿到手後知道大體的解題方向,穩中求勝!加油吧!希望這些能幫到你.,5,