⑴ 數學建模競賽流程
我們國家的大學生數學建模比賽大約在每年的9月份的第二個周末進行,為期三天。
大約流程:
1、需要三個同學組成一個隊,在三天的比賽期限內,選擇一個題目進行做答。
2、最後的解答以論文形式上交所在省的數學建模委員會評審。
3、然後在參加國家的評審。
這三個同學應該一個數學方面的知識和感覺好一些(不妨設為同學A),一個計算既要很強(不妨設為同學B),另外一個文筆稍微好一些(不妨設為同學C)。
同學A負責對題目的數學解題思路和框架以及數學演算法的設計,並在數學模型的選擇上有很大的決定權,同學B負責把同學A的想法進行計算機實現,要快,要求它具有很強的計算機應用能力,同學C負責將前面兩位同學的工作轉化為論文,很好的表述出來。當然,一組的三個同學一起負責對題目的理解。
應該說數學建模比賽要求的是不同能力同學的最優化組合問題,並不要求學歷,但是要求最少具備大學二年級的數學水平。也就是說基本學過高等數學、線性代數和概率統計才行,最好選修果數學建模。
對於怎樣參加,每個學校做法不盡相同。
有的學校是在每年的上半年進行全校選拔賽,脫穎而出的隊參加全國比賽,有的學校是推薦制,每個學院推薦同學進行組隊參賽。還有的幾所大學聯合起來搞一個地區級的數學建模比賽,等等。不一而足。
(1)數學建模大賽考什麼擴展閱讀:
賽事設置
競賽宗旨
創新意識 團隊精神 重在參與 公平競爭。
指導原則
指導原則:擴大受益面,保證公平性,推動教學改革,提高競賽質量,擴大國際交流,促進科學研究。
規模與數據
全國大學生數學建模競賽是全國高校規模最大的課外科技活動之一。
該競賽每年9月(一般在上旬某個周末的星期五至下周星期一共3天,72小時)舉行,競賽面向全國大專院校的學生,不分專業(但競賽分本科、專科兩組,本科組競賽所有大學生均可參加,專科組競賽只有專科生(包括高職、高專生)可以參加)。
同學可以向該校教務部門咨詢,如有必要也可直接與全國競賽組委會或各省(市、自治區)賽區組委會聯系。
全國大學生數學建模競賽創辦於1992年,每年一屆,目前已成為全國高校規模最大的基礎性學科競賽,也是世界上規模最大的數學建模競賽。
2014年,來自全國33個省/市/自治區(包括香港和澳門特區)及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、專科組3114隊)、7萬多名大學生報名參加本項競賽。
比賽時間
2017年比賽時間是9月14號20:00到9月17號24:00,總共76小時,採取通訊方式比賽,比賽地點在各個高校。比賽時間全國統一的,不可以與老師交流,可以在互聯網查閱資料。
同學們在比賽期間應該注意安排時間,以免出現時間不夠用的情況。
⑵ 誰知道數學建模考什麼
根據題目,進行分析,分析後對一系列的數據進行處理,得出相關的關系,再根據這些建立數學模型,對自己建的數學模型分析求解,得出結果。一般數學建模大賽涉及到的是工程管理,經濟教育,生物物理這些方面的東西。
⑶ 大學的數學建模大賽是什麼,重要嗎
數學建模大賽是注重利用數學思維構建數學模型來解決或預測一系列實際問題的比賽。
這類比賽比較傾向於理工科類的大學生,重在培養數學思維,近年來比較出名的比賽有數學建模國賽,電工杯,高教社杯,當然每個學校地區不同,所側重的賽事也不同。
數學建模類比賽並非數學奧數比賽,它側重的不是數的計算,而是數學應用,在實際問題中推演數學規律,這類比賽的難度還是有的,因為問題和解答思路所涉及的並非是局限的,而是答案是從眾多模型中推演,而非正確,只能是最優解,難度不亞於奧數
對於大學生,如果你是理工科類,建議多了解一下這類比賽
⑷ 大學的數學建模競賽怎麼准備
我在大二的時候就和室友一起參加過全國大學生數學建模競賽,學校里也上過這方面的專業課,可以說對此有點自己的見解和建議。下面我想分享一下自己當時做的一些准備供你參考。
首先,肯定要學習數學模型方面的知識。
數學建模,顧名思義就是建立數學模型,需要你去了解一下常用的數學模型。有些同學可能會疑問,數學還有什麼模型呢?不就是套套公式嗎。其實不然,對於國賽,最常用的莫過於概率論與數理統計了。
當然,如果你學有餘力的話,可以去學SPSS這種專業的統計軟體,或者像Visio這樣的繪圖軟體,在統計或者繪圖等方面,用起來更加方面,圖案也更加精美。
總而言之,對於大學的數學建模競賽,還是需要好好准備的,無論是數學的專業知識還是演算法的設計實現。如果能找到合適的隊友,那麼合作起來還是很輕松的,希望你能得到一個好成績!
⑸ 數學建模需要哪些知識
數學建模應當掌握的十類演算法及所需編程語言:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。