導航:首頁 > 數字科學 > 小學數學學得數量關系式有哪些

小學數學學得數量關系式有哪些

發布時間:2023-02-03 17:11:57

⑴ 數量關系式有哪些

1、每份數×份數=總數

總數÷每份數=份數

總數÷份數=每份數

2、1倍數×倍數=幾倍數

幾倍數÷1倍數=倍數

幾倍數÷倍數=1倍數

3、速度×時間=路程

路程÷速度=時間

路程÷時間=速度

4、單價×數量=總價

總價÷單價=數量

總價÷數量=單價

5、工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6、加數+加數=和

和一個加數=另一個加數

7、被減數-減數=差

被減數-差=減數

差+減數=被減數

8、因數×因數=積

積÷一個因數=另一個因數

9、被除數÷除數=商

被除數÷商=除數

商×除數=被除數

10、總數÷總份數=平均數

⑵ 小學數學的數量關系式(我要所有的!!!超詳細的!!!)快!!!~~

路程÷速度=時間
路程÷時間=速度
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
加數+加數=和
和-一個加數=另一個加數
被減數-減數=差
被減數-差=減數
差+減數=被減數
因數×因數=積
積÷一個因數=另一個因數
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
正方形
C周長
S面積
a邊長
周長=邊長×4
C=4a
2
正方體
V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3
長方形
C周長
S面積
a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4
長方體
V:體積
s:面積
a:長
b:

h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5
三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
S面積
C周長

d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
1
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2

⑶ 小學三年級數學數量關系式是什麼意思

常用的數量關系式

1、每份數×份數=總數,總數÷每份數=份數,總數÷份數=每份數。

2、1倍數×倍數=幾倍數,幾倍數÷1倍數=倍數,幾倍數÷倍數=1倍數。

3、速度×時間=路程,路程÷速度=時間,路程÷時間=速度。

4、單價×數量=總價,總價÷單價=數量,總價÷數量=單價。

5、工作效率×工作時間=工作總量,工作總量÷工作效率=工作時間,工作總量÷工作時間=工作效率 。

6、加數+加數=和,和-一個加數=另一個加數。

7、被減數-減數=差,被減數-差=減數,差+減數=被減數。

8、因數×因數=積,積÷一個因數=另一個因數。

9、被除數÷除數=商,被除數÷商=除數,商×除數=被除數。

拓展資料:

小學數學圖形計算公式

1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a。

2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a。

3 、長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab。

4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh。

5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高。

6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah。

7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2。

8 圓形 S面積 C周長 π d=直徑 r=半徑 (1)周長=直徑×π=2×π×半徑 C=πd=2πr (2)面積=半徑×半徑×π。

9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長。

(1)側面積=底面周長×高。

(2)表面積=側面積+底面積×2。

(3)體積=底面積×高 。

(4)體積=側面積÷2×半徑。

10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數。

⑷ 小學數學應用題中常見的數量關系分類歸納

在小學教學基本類型應用題的數量關系中,可分為十一種:加法2種;減法3種;乘法2種;除法4種。現分述如下:
一、加法的種類:(2種)
1.已知一部分數和另一部分數,求總數。
例:小明家養灰兔8隻,養白兔4隻。一共養兔多少只?
想:已知一部分數(灰兔8隻)和另一部分數(白兔4隻)。求總數。
列式:8+4=12(只)答:(略)
2.已知小數和相差數,求大數。
例:小利家養白兔4隻,灰兔比白兔多3隻。灰兔有多少
只?
想:已知小數(白兔4隻)和相差和(灰兔比白兔多3隻),求大數。(灰兔的只數。)
列式:4+3=7(只)
答:(略)
二、減法有3種:
1.已知總數和其中一部分數,求另一部分數。
例:小麗家養兔12隻,其中有白兔8隻,其餘的是灰兔,灰兔有多少只?
想:已知總數(12隻),和其中一部分數(白兔8隻),求另一部分數(灰兔有多少只?)
列式:12—8=4(只)
2.已知大數和相差數,求小數。
例:小強家養白兔8隻,養的白兔比灰兔多3隻。養灰兔多少只?
想:已知大數(白兔8隻)和相差數(白兔比灰兔多3隻),求小數(灰兔有多少只?)
列式:8-3=5(只)
3.已知大數和小數,求相差數。
例:小勇家養白兔8隻,灰兔5隻。白兔比灰兔多多少只?
想:已知大數(白兔8隻)和小數(灰兔5隻),求相差數。(白兔比灰兔多多少只?)
列式:8-5=3(只)
三、乘法有2種:
1.已知每份數和份數。求總數。
例:小利家養了6籠兔子,每籠4隻。一共養兔多少只?
想:已知每份數(4隻)和份數(6籠),求總數(一共養兔多少只?)也就是求6個4是多少
。用乘法計算。
列式:4×6=24(只)
本類應用題值得一提的是,一定要學生分清份數與每份數兩者關系,計算時一定不要列反題。不得改變兩者關系。
即:每份數×份數=總數。
決不可以列式:份數×每份數=總數。
2.求一個數的幾倍是多少?
例:白兔有8隻,灰兔的只數是白兔的2倍。灰兔有多少只?
想:白兔有8隻,灰兔的只數是白兔的2倍,也就是說:灰兔有白兔只數兩個那麼多,就是求2個8隻是多少?
列式:8×2=16(只)
四、除法有4種:
1.已知總數和份數,求每份數。
例:小強有15個蘋果,平均放在3個盤子里,平均每盤放幾個蘋果?
想:已知總數(15個),份數(放3盤)。求每份數(每盤放幾個?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(個)
2.已知總數和每份數,求份數。
例:小強有15個蘋果,每5個放一盤,可以放幾盤?
想:因為已知總數(15個蘋果)和每份數(5個放一盤)求可以放幾盤?也就是看25裡面有幾個5,就可以放幾盤?
列式:15÷5=3(盤)
3.求一個數是另一個數的幾倍。
例:小勇有15個蘋果,有5個梨,蘋果的個數是梨的幾倍?
想:看蘋果的個數裡面有幾個梨的個數,就是梨的幾倍。即求一個數是另一個數的幾倍。
列式:15÷5=3
4.已知一個數的幾倍是多少,求這個數。(用除法來計算。)

⑸ 急求小學數學應用題的數量關系式(需詳細)

3典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)

(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。

(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。

(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)

⑹ 小學常用的數量關系式大全

小學數量關系式大全如下:

1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數。

2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數。

3、速度×時間=路程路程÷速度=時間路程÷時間=速度。

4、單價×數量=總價總價÷單價=數量總價÷數量=單價。

5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率。

6、加數+加數=和和-一個加數=另一個加數。

7、被減數-減數=差被減數-差=減數差+減數=被減數。

8、被除數÷除數=商被除數÷商=除數商×除數=被除數。

9、正方形(C:周長 S:面積 a:邊長):周長=邊長×4 , C=4a,面積=邊長×邊長。

10、正方體 (V:體積 a:棱長 ):表面積=棱長×棱長×6 , S表=a×a×6 ,體積=棱長×棱長×棱長 , V=a×a×a。

11、長方形( C:周長 S:面積 a:邊長):周長=(長+寬)×2C=2(a+b) ,面積=長×寬, S=ab。

⑺ 小學數學的所有數量關系式

本金*利率=利息
單價*數量=總價
工效*時間=工作總量
單產量*數量=總產量
每份數*份數=總數
速度=時間*路程
本金*利率*時間=利息
植樹問題中的主要數量關系是:間隔數×每個間隔的米數=一共的米數;
鋸木頭問題的主要數量關系是:鋸的次數×鋸一次用的時間=一共要的時間;
爬樓梯問題中的數量關系式是:樓梯的級數÷每兩層樓之間樓梯的級數=樓梯的段數。
敲鍾問題的主要關系式是:等待的次數×等待一次用的時間=一共用的時間
成活率=成活棵數/總棵數
合格率=合格/總
本金*利率=利息
單價*數量=總價
工效*時間=工作總量
單產量*數量=總產量
每份數*份數=總數
速度=時間*路程
本金*利率*時間=利息
植樹問題中的主要數量關系是:間隔數×每個間隔的米數=一共的米數;
鋸木頭問題的主要數量關系是:鋸的次數×鋸一次用的時間=一共要的時間;
爬樓梯問題中的數量關系式是:樓梯的級數÷每兩層樓之間樓梯的級數=樓梯的段數。
敲鍾問題的主要關系式是:等待的次數×等待一次用的時間=一共用的時間
成活率=成活棵數/總棵數
合格率=合格/總
公式:
1
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數

⑻ 小學數學數量關系式10個, 例:積=因數+因數

1.加數+加數=和;和—一個加數=另一個加數。
2.被減數—減數=差;被減數—差=減數;差+減數=被減數。
3.因數X因數=積;積÷一個因數=另一個因數。
4.被除數÷除數=商;被除數÷商=除數;商×除數=被除數。
5.長方形的周長=(長+寬)X2;C=(a+b)X2。
6.長方形的面積=長X寬;S=ab。
7.正方形的周長=邊長X4;C=4a。
8.正方形的面積=邊長X邊長;S=axa。
9.三角形的面積=底X高÷2;S=ah÷2。
10.梯形的面積=(上底+下底)X高÷2;S=(a+b)h÷2。
11.圓的周長=圓周率X直徑=圓周率X半徑X2=2πr。
12.圓的面積=圓周率X半徑X半徑。

⑼ 小學數學常見的數量關系

1、單價×數量=總價

2、單產量×數量=總產量

3、速度×時間=路程

⑽ 小學三年級數學數量關系式是什麼意思

常用的數量關系有如下幾種
1、速度乘以時間等於路程
2、單價乘以數量等於總價
3、加數加加數=和
4、被減數減減數=差

閱讀全文

與小學數學學得數量關系式有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:736
乙酸乙酯化學式怎麼算 瀏覽:1401
沈陽初中的數學是什麼版本的 瀏覽:1347
華為手機家人共享如何查看地理位置 瀏覽:1039
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:881
數學c什麼意思是什麼意思是什麼 瀏覽:1405
中考初中地理如何補 瀏覽:1296
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:698
數學奧數卡怎麼辦 瀏覽:1384
如何回答地理是什麼 瀏覽:1020
win7如何刪除電腦文件瀏覽歷史 瀏覽:1052
大學物理實驗干什麼用的到 瀏覽:1481
二年級上冊數學框框怎麼填 瀏覽:1696
西安瑞禧生物科技有限公司怎麼樣 瀏覽:962
武大的分析化學怎麼樣 瀏覽:1244
ige電化學發光偏高怎麼辦 瀏覽:1334
學而思初中英語和語文怎麼樣 瀏覽:1647
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1483
數學中的棱的意思是什麼 瀏覽:1054