導航:首頁 > 數字科學 > 數學知識點要怎麼形容

數學知識點要怎麼形容

發布時間:2023-02-05 07:26:16

『壹』 初一數學知識點整理

學數學要在理解的基礎上去做題,學會數學關鍵在於個人的悟性,除了上課認真聽講、課後做匹配練習外,還需要練就獨立解題能力與 總結 反思 能力,學會以不變應萬變。這次我給大家整理了初一數學知識點整理,供大家閱讀參考。

初一數學知識點整理

一:角的種類

角的種類:角的大小與邊的長短沒有關系;角的大小決定於角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

銳角:大於0°,小於90°的角叫做銳角。

直角:等於90°的角叫做直角。

鈍角:大於90°而小於180°的角叫做鈍角。

平角:等於180°的角叫做平角。

優角:大於180°小於360°叫優角。

劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。

周角:等於360°的角叫做周角。

負角:按照順時針方向旋轉而成的角叫做負角。

正角:逆時針旋轉的角為正角。

0角:等於零度的角。

餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。

對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。

初一數學必考知識點:一元一次方程組的解法

一般步驟:

第一步:去分母,在方程兩邊同乘以所有分母的最小公倍數.注意:分子要加括弧,不要漏乘不含有分母的項;

第二步:去括弧,先去小括弧,再去中括弧,最後去大括弧.注意:不要漏乘括弧內各項,若括弧前面是「 - 」,去括弧後括弧內各項都要變號;

第三步:移項,把含有未知數的項移到方程的一邊,其他項移到另一邊.注意:移項要變號,不移的項不變號,移項時不要漏項;

第四步:合並同類項,把方程化為 ax=b(a≠0)的形式.注意:系數相加,字母部分不變;

第五步:系數化為 1,把方程兩邊同除以未知數的系數 a,得到方程的解 x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置顛倒.

二:整式的加減

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1.

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

5.常數項:不含字母的項叫做常數項。

6.多項式的排列

(1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

(2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

7.多項式的排列時注意:

(1)由於單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

(2)有兩個或兩個以上字母的多項式,排列時,要注意:

a.先確認按照哪個字母的指數來排列。

b.確定按這個字母向里排列,還是向外排列。

(3)整式:

單項式和多項式統稱為整式。

8. 多項式的加法:

多項式的加法,是指多項式的同類項的系數相加(即合並同類項)。

9.同類項:所含字母相同,並且相同字母的次數也分別相同的項叫做同類項。

10.合並同類項:多項式中的同類項可以合並,叫做合並同類項,合並同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。

初一數學知識點

第一章 有理數

1.1 正數與負數

在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。

與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數

正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

整數和分數統稱有理數(rational number)。

通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

數軸三要素:原點、正方向、單位長度。

在直線上任取一個點表示數0,這個點叫做原點(origin)。

只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法

有理數加法法則:

1.同號兩數相加,取相同的符號,並把絕對值相加。

2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

3.一個數同0相加,仍得這個數。

有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法

有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

乘積是1的兩個數互為倒數。

有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。

負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

把一個大於10的數表示成a×10的n次方的形式,用的就是科學計數法。

從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程

2.1 從算式到方程

方程是含有未知數的等式。

方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。

等式的性質:

1.等式兩邊加(或減)同一個數(或式子),結果仍相等。

2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)

把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步

3.1 多姿多彩的圖形

幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段

線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算

如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。

如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。

等角(同角)的補角相等。

等角(同角)的餘角相等。

初一數學知識點整理4-6章

第四章 數據的收集與整理

收集、整理、描述和分析數據是數據處理的基本過程。

第五章 相交線與平行線

5.1 相交線

對頂角(vertical angles)相等。

過一點有且只有一條直線與已知直線垂直(perpendicular)。

連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

5.2 平行線

經過直線外一點,有且只有一條直線與這條直線平行(parallel)。

如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

直線平行的條件:

兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。

兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。

5.3 平行線的性質

兩條平行線被第三條直線所截,同位角相等。

兩條平行線被第三條直線所截,內錯角相等。

兩條平行線被第三條直線所截,同旁內角互補。

判斷一件事情的語句,叫做命題(proposition)。

第六章 平面直角坐標系

6.1 平面直角坐標系

含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。

初一數學知識點整理7-10章

第七章 三角形

7.1 與三角形有關的線段

三角形(triangle)具有穩定性。

7.2 與三角形有關的角

三角形的內角和等於180度。

三角形的一個外角等於與它不相鄰的兩個內角的和。

三角形的一個外角大於與它不相鄰的任何一個內角

7.3 多邊形及其內角和

n邊形內角和等於:(n-2)?180度

多邊形(polygon)的外角和等於360度。

第八章 二元一次方程組

8.1 二元一次方程組

方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。

把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。

使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。

二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

8.2 消元

將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

第九章 不等式與不等式組

9.1 不等式

用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。

使不等式成立的未知數的值叫做不等式的解。

能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。

含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性質:

不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

三角形中任意兩邊之差小於第三邊。

三角形中任意兩邊之和大於第三邊。

9.3 一元一次不等式組

把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。

第十章 實數

10.1 平方根

如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。

a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。

0的算術平方根是0。

如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。

求一個數a的平方根的運算,叫做開平方(extraction of square root)。

10.2 立方根

如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。

求一個數的立方根的運算,叫做開立方(extraction of cube root)。

10.3 實數

無限不循環小數又叫做無理數(irrational number)。

有理數和無理數統稱實數(real number)。

數學的 學習 方法

1、養成良好的學習數學習慣。 建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

2、及時了解、掌握常用的數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。

3、逐步形成 「以我為主」的學習模式 數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神。

4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。


初一數學知識點整理相關 文章 :

★ 初一數學重要知識點歸納

★ 初一數學重要知識點

★ 初一數學課堂知識點

★ 初一數學知識點歸納

★ 初一數學學習方法總結

★ 七年級數學知識點整理大全

★ 初一數學重要知識點總結

★ 非常實用的初一數學知識點

★ 初一上學期數學知識點歸納

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『貳』 數學知識點有哪些

數學知識點:

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:a + b = b + a。

3、乘法交換律:a × b = b × a。

4、乘法結合律:a × b × c = a ×(b × c)。

5、乘法分配律:a × b + a × c = a × b + c。

6、除法的性質:a ÷ b ÷ c = a ÷(b × c)。

7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

8、有餘數的除法:被除數=商×除數+余數。

『叄』 數學中什麼叫做知識點是重點嗎

數學中基本知識很少,一般不會有要被的知識點。要被的都是公式。數學考試大多考的都是你對公式的靈活運用,初中的話就是幾個公理和定理比較重要,高中就是公式,知識點在初中是重點,因為在證明時你要用。高中知識點就沒有那麼重要了,因為高中證明不要公理和定理,不像初中你要寫出來。

『肆』 高中數學知識點大全

有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!

高中數學知識點

1、基本初等函數

指數、對數、冪函數三大函數的運算性質及圖像

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

2、函數的應用

這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。

3、空間幾何

三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

4、點、直線、平面之間的位置關系

這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

5、圓與方程

能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

6、三角函數

考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

7、平面向量

向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

8、三角恆等變換

這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

9、解三角形

掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。

10、數列

等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

11、不等式

這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。



高中數學公式大全

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h

正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2

圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l

弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r

錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s_h 圓柱體 V=pi_r2h

高考前數學知識點 總結

選擇填空題

1、易錯點歸納:

九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

2、答題方法:

選擇題十大速解方法:

排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

解答題

專題一、三角變換與三角函數的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

專題二、解三角形問題

1、解題路線圖

(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。

(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。

②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。

專題三、數列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數列的關系式。

②求通項公式。

③求數列和通式。

2、構建答題模板

①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,並用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特徵點坐標。

③求向量:求直線的方向向量或平面的'法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數:用一個變數表示目標變數,代入不等關系式。

③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。

④再回顧:注意目標變數的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

專題七、離散型隨機變數的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

2、構建答題模板

①定元:根據已知條件確定離散型隨機變數的取值。

②定性:明確每個隨機變數取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變數取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據均值、方差公式求解其值。

專題八、函數的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

2、構建答題模板

①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。

高中數學 學習心得

數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。

一、 認清學習的能力狀態。

1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。

2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。

二、 努力提高自己的學習能力。

1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。

高中數學知識點大全相關 文章 :

★ 高二數學知識點總結

★ 高一數學必修一知識點匯總

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點總結

★ 高一數學知識點總結歸納

★ 高三數學知識點考點總結大全

★ 高中數學基礎知識大全

★ 高三數學知識點梳理匯總

★ 高中數學必考知識點歸納整理

★ 高一數學知識點總結期末必備

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『伍』 小升初數學知識點總結

數學知識點多如毛發。不積跬步,無以至千里;不積小流,無以成江海。對於考試而言,每天進步一點點,基礎扎實一點點,通過考試就會更容易一點點。接下來是我為大家整理的小升初數學知識點 總結 ,希望大家喜歡!

↓↓↓點擊獲取更多"小升初知識點"↓↓↓

★ 歷年小升初作文題目 ★

★ 小升初語文陳述句反問句互改 ★

★ 小升初英語語法必背知識點 ★

★ 小升初一至六年級數學知識點 ★

小升初數學知識點總結一

計演算法則【整數、小數、分數】

一、計算整數加、減法要把相同數位對齊,從低位算起。

二、計算小數加、減法要把小數點對齊,從低位算起。

三、小數乘法:1、先按整數乘法算出積是多少,看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點。

2、注意:在積里點小數點時,位數不夠的,要在前面用0補足。

四、小數除法:

1、商的小數點要和被除數的小數點對齊;

2、有餘數時,要在後面添0,繼續往下除;

3、個位不夠商1時,要在商的整數部分寫0,點上小數點,再繼續除。

4、把除數轉化成整數時,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位。

5、當被除數的小數位數少於除數的小數位數時,要在被除數的末尾用0補足。

五、一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位……

六、一個小數除以10、100、1000……只要把這個小數的小數點向左移動一位、兩位、三位……

七、分數加、減法:1同分母分數相加減,把分子相加減,分母不變。2異分母分數相加減,要先通分化成同分母分數,然後再相加減。

八、分數大小的比較:1同分母分數相比較,分子大的大,分子小的小。2異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

九、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

十、甲數除以乙數(0除外),等於甲數乘乙數的倒數。

小升初數學知識點總結二

用字母表示數

1、用字母表示數的意義和作用

_字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結果。

2、用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式

(1)常見的數量關系

路程用s表示,速度v用表示,時間用t表示,三者之間的關系:

s=vt

v=s/t

t=s/v

總價用a表示,單價用b表示,數量用c表示,三者之間的關系:

a=bc

b=a/c

c=a/b

(2)運算定律和性質

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

乘法交換律:ab=ba

乘法結合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

減法的性質:a-(b+c)=a-b-c

(3)用字母表示幾何形體的公式

長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。

c=2(a+b)

s=ab

正方形的邊長a用表示,周長用c表示,面積用s表示。

c=4a

s=a2

平行四邊形的底a用表示,高用h表示,面積用s表示。

s=ah

三角形的底用a表示,高用h表示,面積用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。

s=(a+b)h/2

s=mh

圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。

c=∏d=2∏r

s=∏r2

扇形的半徑用r表示,n表示圓心角的度數,面積用s表示。

s=∏nr2/360

長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。

v=sh

s=2(ab+ah+bh)

v=abh

正方體的棱長用a表示,底面周長c用表示,底面積用s表示,體積用v表示.

s=6a2

v=a3

圓柱的高用h表示,底面周長用c表示,底面積用s表示,體積用v表示.

s側=ch

s表=s側+2s底

v=sh

圓錐的高用h表示,底面積用s表示,體積用v表示.

v=sh/3

3、用字母表示數的寫法

數字和字母、字母和字母相乘時,乘號可以記作「.」,或者省略不寫,數字要寫在字母的前面。

當「1」與任何字母相乘時,「1」省略不寫。

在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。

用含有字母的式子表示問題的答案時,除數一般寫成分母,如果式子中有加號或者減號,要先用括弧把含字母的式子括起來,再在括弧後面寫上單位的名稱。

4、將數值代入式子求值

_具體的數代入式子求值時,要注意書寫格式:先寫出字母等於幾,然後寫出原式,再把數代入式子求值。字母表示的是數,後面不寫單位名稱。

_一個式子,式子中所含字母取不同的數值,那麼所求出的式子的值也不相同。

小升初數學知識點總結三

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1) =42÷3 =14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1) =42÷6=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1) =300÷4 =75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2 =150÷2 =75(歲) 75-2=73(歲)

小升初數學知識點總結四

數的性質和規律

一、商不變的規律

在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。

二、小數的性質

在小數的末尾添上零或者去掉零小數的大小不變。

三、小數點位置的移動引起小數大小的變化

1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……

2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……

3. 小數點向左移或者向右移位數不夠時,要用「0"補足位。

四、分數的基本性質

分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。

五、分數與除法的關系

1. 被除數÷除數= 被除數/除數

2. 因為零不能作除數,所以分數的分母不能為零。

3. 被除數相當於分子,除數相當於分母。

小升初數學知識點總結五

速算口訣

1、十幾乘十幾:

口訣:頭乘頭,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

註:個位相乘,不夠兩位數要用0佔位。

2、頭相同,尾互補(尾相加等於10):

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

註:個位相乘,不夠兩位數要用0佔位。

3、第一個乘數互補,另一個乘數數字相同:

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

註:個位相乘,不夠兩位數要用0佔位。

4、幾十一乘幾十一:

口訣:頭乘頭,頭加頭,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5、11乘任意數:

口訣:首尾不動下落,中間之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分別在首尾

11×23125=254375

註:和滿十要進一。

6、十幾乘任意數:

口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,

再向下落。

例:13×326=?

解:13個位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

註:和滿十要進一。


小升初數學知識點總結相關 文章 :

★ 小升初數學知識考點歸納

★ 小升初數學知識點總結

★ 小升初數學考試知識點整理

★ 小升初數學知識點匯總與常見易錯點

★ 小升初數學考試必備知識點與易錯點

★ 小升初總復習數學

★ 小升初考試必備數學10大難點和34個重難點公式

★ 小升初數學考試易錯點大總結

★ 小升初數學經典必考題型50道

★ 小升初數學知識點:統計圖的意義與分類

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『陸』 數學知識點總結

數學集合知識點總結

集合是高中數學中的一個重要考點,相關的知識掌握並不是十分的難,下面是我想跟大家分享的數學集合知識點總結,歡迎大家瀏覽。

數學知識點總結1

一、知識歸納:

1、集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集)、其中每一個對象叫元素

注意:

①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N*

2、子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:

①? A,若A≠?,則? A ;

②若 , ,則 ;

③若 且 ,則A=B(等集)

3、弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:

(1) 與 、?的區別;

(2) 與 的區別;

(3) 與 的區別。

4、有關子集的幾個等價關系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5、交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6、有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n—1個非空子集,2n—2個非空真子集。

二、例題講解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

A) M=N P B) M N=P C) M N P D) N P M

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}

對於集合P:{x|x= ,p∈Z},由於3(n—1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。

分析二:簡單列舉集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

變式:設集合 , ,則( B )

A、M=N B、M N C、N M

解:

當 時,2k+1是奇數,k+2是整數,選B

【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

A)1 B)2 C)3 D)4

分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為

A)5個 B)6個 C)7個 D)8個

變式2:已知{a,b} A {a,b,c,d,e},求集合A。

解:由已知,集合中必須含有元素a,b。

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。

評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 。

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,

∴ ∴

變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值。

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5

∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4

∴b=—4,c=4,m=—5

【例4】已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1

分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。

解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。

綜合以上各式有B={x|—1≤x≤5}

變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=Φ,求a,b。(答案:a=—2,b=0)

點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

變式2:設M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。

解答:M={—1,3} , ∵M∩N=N, ∴N M

①當 時,ax—1=0無解,∴a=0 ②

綜①②得:所求集合為{—1,0, }

【例5】已知集合 ,函數y=log2(ax2—2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

分析:先將原問題轉化為不等式ax2—2x+2>0在 有解,再利用參數分離求解。

解答:(1)若 , 在 內有有解

令 當 時,

所以a>—4,所以a的取值范圍是

變式:若關於x的方程 有實根,求實數a的取值范圍。

解答:

點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

數學知識點總結2

一、集合與函數概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:元素的確定性;元素的互異性;元素的無序性。

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法

二、函數的有關概念

1、函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數。記作:y=f(x),x∈A。其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的.值域。

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,

①集合A、B及對應法則f是確定的;

②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;

③對於映射f:A→B來說,則應滿足:

(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;

(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

拓展閱讀:學習數學的方法

第一、興趣。

如今的家庭和學校對孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強大,還有的就是數學這科目難度相對來說較高,很容易會導致女生對數學的興趣降低。

所以說,作為老師應該多關心她們的學習情況,多與她們交流科目上的內容,了解她們的想法,只有理解她們的想法才能有效的制定相應的學習計劃,為她們驅除緊張的情緒,從而達到一個好的學習狀態。與此同時,作為家長的應該多關心孩子的情況,不要一看到成績不好就開口訓斥,這樣對孩子的心理會造成一定的影響,甚至可能削弱孩子對數學的興趣。我們應該用積極的態度去對待孩子的學習,女生的情感與男生不同,她們對於感興趣的,一般會更有耐心克服困難,達到自己的目標。

第二、自信。

女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現象。事實上,女生在運算準確率方面是很高的,也比較規范,所以我們看到女生的數學答題大都很工整,其實這是一個優點。

所謂每個人都有優缺點,我們不應該因為自己的缺點而妄自菲薄,而是應該努力克服缺點,增強自己的自信心,在學習上應該多了解通解通法,還有一些常用的數學公式,解題技巧,還有解題速度。很多女生解數學題的速度都不快,甚至有些女生到時間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。

第三、學習方法。

很多女生在學習數學的時候喜歡按部就班,注重基礎,但是卻很少做難題,所以便導致了解題能力薄弱。女生上課的時候很認真,復習的時候喜歡看筆記和書本,但是卻忽視了對自己能力的訓練,所以導致了自己適應性比較差。

所以,女生應該從這幾點下手,多下功夫,對於難題我們不要害怕,但是也不能一味地做難題,適當的訓練,對於自己的數學能力是有很大提升的。還有,女生在學習數學的時候應該多向男生學習,學習他們的一些優秀技巧,進而轉化為自己的學習技巧,結合在做題上,多訓練,相信對自己的數學水平是有很大幫助的。

第四、課前預習。

正所謂「笨鳥先飛」,我們經過預習可以提前對新內容有一個大概的了解,從而在聽課的時候能夠有的放矢,對自己不了解的知識點著重注意,很可能會有奇效。而提前預習,還能對女生的心理有一個暗示,對女生的信心提高也是有極大的好處。

;
閱讀全文

與數學知識點要怎麼形容相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:736
乙酸乙酯化學式怎麼算 瀏覽:1401
沈陽初中的數學是什麼版本的 瀏覽:1347
華為手機家人共享如何查看地理位置 瀏覽:1038
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:881
數學c什麼意思是什麼意思是什麼 瀏覽:1405
中考初中地理如何補 瀏覽:1296
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:697
數學奧數卡怎麼辦 瀏覽:1384
如何回答地理是什麼 瀏覽:1020
win7如何刪除電腦文件瀏覽歷史 瀏覽:1051
大學物理實驗干什麼用的到 瀏覽:1481
二年級上冊數學框框怎麼填 瀏覽:1696
西安瑞禧生物科技有限公司怎麼樣 瀏覽:962
武大的分析化學怎麼樣 瀏覽:1244
ige電化學發光偏高怎麼辦 瀏覽:1334
學而思初中英語和語文怎麼樣 瀏覽:1646
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1483
數學中的棱的意思是什麼 瀏覽:1054