1. 請問怎樣才能更快的記住數學公式啊
郭敦顒回答:
數學中的概念和公式很多,全部記住是不可能的,記住主要概念和公式就可以了。這需要做到以下幾點:
1,首先是要理解,能推導出公式;
2,能用自己的語言表達出公式的意義,並能默寫出公式;
3,將數學公式能分門別類列出;
4,對數學公式進行縱向與橫向的聯系,能找出並理解它們之間的相互關系,知其相同與相異點,避免混淆;
5,數學公式都是有特點的,找出其特點,變抽象思維為形象思維;
6,切忌生記硬背,
7,多做些練習,熟能生巧,熟能記憶。
2. 怎樣背數學公式背的快
數學公式只有理解後,才能真正記住的。想要背得快,就要把其中的原理記住。記住了就很容易背出來了。
3. 如何更快的背數學概念
理解加記憶加運用,多做相關概念的習題應該會有效果。
4. 什麼方法能很快的記住數學公式
什麼方法能很快的記住數學公式?1、多做題。不必死記硬背就可以有效的記住數學公式。因為你做題時一直需要用它們。2、數學公式前不是有條件嗎,
就先不看結論,
自己推導一下,
是不是能推到結論的公式,
有不對的地方,
再看看書,
理解後重新來一遍,
多次後,
想忘記都難了。3、賦予一個名稱,或使用一個記號。有時候,為了加深對某個公式的印象,可以自己賦予某一公式的部件以一個合適的名稱,也可以使用一個恰當的記號。經過這種刺激,反而使學生記住這一公式。4、利用圖表。某些公式,可以製成一個圖或一個表,藉此,可較為輕松地記住這些公式。5、編制口決。有時候,為了記住某個公式,或為了正確地使用公式,可以根據公式的特點編制一些口訣,運用口訣就可以較方便地解決這種記憶。
例:三角學中有所謂誘導公式,它由
54個公式組成。如果記住這54個公式,膾炙人口的口訣「奇變偶不變,符號看象限」就完全解決了這一問題。
5. 如何快速記憶數學知識
數學中的記憶能力是掌握基礎知識,形成基本能力的基礎。許多數學知識,不僅需要我們理解,而且更需要我們記住它。下面由我給你帶來關於如何快速記憶數學知識,希望對你有幫助!
一、分類記憶法
遇到數學公式較多,一時難於記憶時,可以將這些公式適當分組。
二、推理記憶法
許多數學知識之間邏輯關系比較明顯,要記住這些知識,只需記憶一個,而其餘可利用推理得到,這種記憶稱為推理記憶。
三、標志記憶法
在學習某一章節知識時,先看一遍,對於重要部分用彩筆在下面畫上波浪線,再記憶時,就不需要將整個章節的內容從頭到尾逐字逐句的看了,只要看劃重點的地方並在它的啟示下就能記住本章節主要內容,這種記憶稱為標志記憶。
四、回想記憶法
在重復記憶某一章節的知識時,不看具體內容,而是通過大腦回想達到重復記憶的目的,這種記憶稱為回想記憶。在實際記憶時,回想記憶法與標志記憶法是配合使用的。
五、理解記憶法理解是一種有效的最基本的記憶方法,豐富的數學知識,靠死記硬背是容易忘記的,只有深刻理解了才能記牢。因此,對概念、性質的概括、法則的得出、公式的推導等過程都必須一清二楚。比如,各種面積公式,其中長方形面積公式是最基本的,其他圖形的面積公式都可以從長方形的面積公式中推導出來。學生理解了推導的過程和關系,就容易記住各種圖形的面積公式了。(五)理解記憶法
理解是一種有效的最基本的記憶方法,豐富的數學知識,靠死記硬背是容易忘記的,只有深刻理解了才能記牢。因此,對概念、性質的概括、法則的得出、公式的推導等過程都必須一清二楚。比如,各種面積公式,其中長方形面積公式是最基本的,其他圖形的面積公式都可以從長方形的面積公式中推導出來。學生理解了推導的過程和關系,就容易記住各種圖形的面積公式了。
六、規律記憶法
即根據事物的內在聯系,找出規律性的東西來進行記憶。比如,識記公制長度單位、面 積單位、體現單位的化法和聚法。化法和聚法是互逆聯系,即高級單位的數值×進率:低級單位的數值,低級單位的數值+進率=高級單位的數值。掌握了這兩條規律,化聚問題就迎刃而解了。規律記憶,需要學生開動腦筋對所學的有關材料進行加工和組織,因而記憶牢固。
一、壓縮記憶
壓縮記憶是一個總結歸納的過程,其實就是對知識點進行理解的過程。我們可以把所有的知識點進行分類歸納,把相同的知識點歸納在一起,在按照邏輯順序把所有知識點按照標題等級大小進行排列,通過這樣的方式就把該知識點的零碎內容從小到大歸納成一個整體。通過這種方法再去記憶,就更加容易了。壓縮記憶法的優勢就是比較全面、深入地進行記憶,有利於對考試的內容做總體的把握。
二、自檢記憶
自檢記憶就是通過不斷的自我檢測對所學的知識進行鞏固,換句話說,每次復習結束後,我們都應該把剛看的內容仔細想一遍,記住的就沒必要再看。在以後的復習中,不斷的重復上述的做法,就像過濾一樣沒記住的范圍就會變得越來越少,直到全部都記住。這種方法的好處是不受時間的限制,只要有時間,就可以隨時進行自檢,只要腦子有空閑,就可以不斷的想自己沒有記住的知識。不斷的重復就是將知識刻在腦海中的有效辦法。
三、聯想記憶
所謂聯想記憶就是在生活和工作中去應用書本上學到的知識,利用課程較強的應用性,通過這種屬性用學過的知識分析身邊中出現的案例,利用實際案例中的應用來理解自己所學的知識。利用聯想記憶法,不僅記住了書本所涉及的知識,更是記住了案例分析,這樣記憶往往比直接空洞的死記硬背要好。
6. 怎樣能快速背課文數學概念
1、將課文中的生詞標注出來,將長難句進行劃分,然後熟練閱讀課文。
2、語文課文都有一定的邏輯性,且作者寫作時會有一定的寫作順序。可以按照相對的順序來幫助記憶。
3、數學概念需要多應用才能深刻記憶,應多練習相關習題,多做幾組相同的習題會比較容易記憶。
4、可以將數學公式進行劃分,分成不同的類別群組,然後分組記憶。
5、在記憶課文和數學公式時,記憶的間隔不能太久,需要隔一段時間重復記憶。
7. 如何快速記憶小學數學公式
小學是積累知識點,培養學習興趣最好的階段,所以家長一定要重視,如果孩子在小學的時候就失去對學習的興趣,將來是很難提起來的,小學數學是一個很難的學科,根據從教多年的經驗,其實孩子在記憶數學知識內容的時候缺少興趣往往是因為知識內容的枯燥無味,只要將知識點轉化為有效的形式進行掌握,孩子學起來也會更加輕松,對於數學的興趣也會更加濃厚。
方法一:圖形結合記憶法
小學公式中,會存在大量平面幾何的公式,比如三角形周長及面積公式,或是長方形周長及面積公式,圓形周長及面積公式等等,對於這類平面幾何公式,可以引導孩子結合相應的圖形具象地記憶,比如等腰三角形周長就是由兩條相等的腰加上底邊的長度,通過繪圖可以更加直觀地看出如何相加。通過圖像結合來記憶小學數學公式的平面幾何公式,對於孩子來說會有比較直接的收效。
方法二:在練習中加強記憶
如果只是靠背誦記憶大量的小學數學公式的話,短時間內小朋友可能會有較深的印象,但是時間一久可能就會逐漸忘記,因此,除了通過背誦記憶公式外,還可以通過反復練習的方法去加強記憶,比如數學公式中的和差問題或是和倍問題等等,在記憶的過程中還可以加快解題速度和正確率,在作業和考試時可以達到更好的效果。
方法三:聯想記憶法
小學數學公式大全包羅了很多的公式,單獨一條條進行記憶,記憶的效果是非常不明顯的,而且很容易就會出現遺忘,配合不同的方式來進行記憶,記憶過程是有趣的,記憶效果也是十分理想的,我以上整理的三種方法已經幫助不少的學生成功記憶公式。
8. 如何快速記憶數學公式的方法
初一數學公式是初一數學基礎知識的重要組成部分,因為初一數學公式是概念的繼續和發展,是定理定律的集中表現,初一數學公式凝聚著數學中的全部精華,同時它又是我們解初一數學題或證題的依據和工具。很多初一的同學有些題目不是不會做,而是因為沒有記住初一數學公式,或者是把公式記混了才做不出來。下面我就為大家介紹一下應該如何記憶初一數學公式,歡迎大家參考和學習。
從初一數學公式的來源進行記憶。有些同學只側重於記憶和運用公式的結論,對數學公式的來源不夠重視。大家應該在數學公式推證過程中,對公式的來龍去脈有較清楚的了解,這樣不但在學習中增加許多知識,還能有助於對數學公式的記憶和運用。掌握了數學公式的推證 方法 ,明確了數學公式的脈絡,萬一某個公式忘記了,也能迅速地推證出來。
從公式的本質特徵進行記憶。對初一數學公式的認識不能停留在表面的認識上,要重視數學公式的來源,和初一數學公式本身的內在規律,我們必須深入地理解公式的實質極其全部含義,掌握它們的基本特徵和重要性質。利用公式的本質特徵記憶公式,還應有意識地訓練自己能夠用語言准確地敘述數學公式,這樣有利於對公式的理解和記憶。如果能用簡練明確的口訣把公式中主要數量關系突出地表達出來,這更是記憶數學公式行之有效的方法。
從初一數學公式之間的比較進行記憶。對於有聯系的或容易混淆的公式,可以根據公式的不同特點,進行適當的對照比較,揭示其內在聯系,找到它們的異同點,這樣可以對公式有更加清晰的印象又可有效地防止某些類似數學公式的混淆。當然,要真正達到熟記初一數學公式,還要及時復習,反復運用,在運用中牢固掌握。
下面我再為大家介紹一些常見的 快速記憶法 ,供大家參考和學習。
常用的快速記憶法1、連鎖記憶法
就是對將要進行記憶的詞語,進行一一串接,由一個詞語想到另一個詞語,這種記憶的關鍵在於串接的鏈條的結實程度,例如,我們來記憶書桌, 籃球 ,高樓三 組詞 語,首先,書桌和籃球鏈接,書桌下的籃球慢慢變大,把書桌頂到房頂,然後籃球和高樓,大大的籃球樣的球從高空落下,把高樓砸的粉碎。
2、編 故事 記憶法
首先對需記憶內容進行提取關鍵詞,然後通過形象,生動的故事把關鍵詞串接起來,幫助記憶。
3、定樁法
首先用定樁,有身體樁、數字樁、羅馬房間等,然後需記憶內容與樁子掛鉤,達到記憶的目的
4、口訣記憶法
利用口訣, 順口溜 記憶,如,1851年,秀全起義在金田,1839.6月3,林則徐硝煙虎門灘等。
5、首字母記憶法,提取首字母減少記憶負擔。
6、歸納記憶法,把同類內容記憶,按照大腦存儲原理。
7、圖表記憶法,把所需要記憶內容用形象表現出來,利用右腦幫助記憶。
8、音樂記憶法,利用a波段音樂,調動潛意識幫助記憶。
9、復述記憶法,用嘗試回憶的方法來幫助記憶。
10、聯想記憶法,利用諧音等手段,輔助記憶。
如何記憶數學公式1. 記憶的目的是為了應用
人腦不應該去和電腦比拼 記憶力 。我們記憶的目的不是為了挑戰自己的記憶力,而是為了在中高考中幫助我們解題,或者用來解決別的實際問題。有意義的東西才去記,沒意義的東西就不要記。
不要迷信一些花里胡哨的記憶訣竅。比如,不管是用“諧音法”還是“圖形法”還是別的什麼方法來強行記憶圓周率後的幾十位數字,這些東西都是沒有意義的。有這個工夫,不如多解幾道數學題,對提高數學成績更有幫助。
2. 根據知識的用途來決定記憶的重點
並不是所有需要記憶的東西都要記得一清二楚才算“記住了”。只要得到了我們背一個東西所希望得到的收獲,就算“記住了”。
數學、物理、化學等理科公式的記憶,目的是為了計算解題,所以重點在於知道它的來龍去脈,用起來才靈活;語文的詩詞和文段,重點在於理解它的構架和文筆,寫作的時候才能借鑒,至於個別字詞記憶有點小差錯,其實沒什麼關系;歷史政治知識的記憶,重點在於記住歷史事件的脈絡和政治理論的邏輯結構,在分析問題回答問題的時候能夠用得上,至於具體的表述,不需要記得一字不差;英語 文章 的背誦,重點在於加深對單詞、語法和句型的理解,背完之後把文章忘了都沒關系,記住文中有用的語法和 句子 結構就行。
3. 只有真正理解的東西才能記得牢
記憶=90% 的理解+10% 的背誦。花在理解上的時間一定要比背誦的時間多,這樣學習才有效率。沒有建立在理解基礎上的死記硬背,只會有兩種結果:第一,記得慢,忘得快;第二,記得快,忘得更快。
如果有一些知識記起來很痛苦,或者不斷地背又不斷地忘。首先要懷疑的不是自己的智商,而是自己對這些知識有沒有徹底理解。
4. 徹底理解是指明白過程而不是記住結果
在某一塊知識的內部,如果你知道它里邊最簡單的概念與最復雜的內容之間的聯系,那麼你對這一塊知識,就算徹底理解了。它強調的是過程,而不是結果。
在復習解析幾何的時候,你可以先問自己:“解析幾何最簡單的概念是什麼?”然後問自己:“解析幾何裡面哪些地方我覺得最難,最搞不清楚?”然後,你試著用各種方法讓自己搞清楚怎麼從這些最簡單的概念一步一步推出最難最復雜的知識點。只要你把這個過程搞清楚了,那麼,這些難點對你而言,就可以算是徹底理解了。這個方法,對任何一種有規律的知識,都是有用的。
5. 把握知識的規律可以讓記憶事半功倍
在徹底理解的基礎上,把握知識的規律,可以讓我們的記憶事半功倍。尋找規律的方法,將通過一系列的例子詳細講解。
快速記憶數學公式的方法1、要有良好的 數學 學習方法 和習慣
良好的數學學習習慣,會減輕數學學習的難度,要學會把課堂知識用自己特殊方法記憶下來,那就要做到認真預習、專心上課、及時復習、獨立作業、系統小結。
2、掌握常用的數學思想和方法
做數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西,是否可以運用哪些數學公式來做這些題。
3、慢慢養成“以我為主”的學習模式
學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的 措施
(1)記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。
(2)建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。
(3)熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
(4)經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目瞭然。
(5)閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
(6)及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學後忘。
任何一門課的學習都需要科學方法,數學公式的記憶同樣也需要,希望學生能能根據以上建議,為自己建立一套完整的數學公式 記憶方法 。
猜你喜歡:
1. 高三文科數學公式及知識點速記口訣
2. 巧記常用平方立方數
3. 多米尼克·奧布萊恩的簡化數學記憶方法
4. 快速記憶地理公式的方法技巧
5. 快速記憶初中數學的方法
6. 2017財務管理公式如何記憶
9. 怎麼才能把數學知識點背會
數學學習方法
這里我們講一下數學學習的方法.這是我們應用國外的快速學習方法,根據數學學科特點提出來的.由於代數學習法和幾何學習法的不同,我們分別進行討論.
一、代數學習法.
抄標題,瀏覽定目標.
閱讀並記錄重點內容.
試作例題.
快做練習,歸納題型.
回憶小結
二、幾何學習四大步.
1.①書寫標題,瀏覽教材
②自我講授,寫出目錄
2.①按目錄,讀教材
②自我講授幾何概念及定理
3.①閱讀例題,形成思路
②寫出解答例題過程
4.①快做練習.
②小結解題方法.
三.數學概念學習方法.
數學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什麼程度.數學概念是反映數學對象本質屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式.一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷.這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習.
下面我們歸納出數學概念的學習方法:
閱讀概念,記住名稱或符號.
背誦定義,掌握特性.
舉出正反實例,體會概念反映的范圍.
進行練習,准確地判斷.
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數.有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里.教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式.
我們介紹的數學公式的學習方法是:
書寫公式,記住公式中字母間的關系.
懂得公式的來龍去脈,掌握推導過程.
用數字驗算公式,在公式具體化過程中體會公式中反映的規律.
將公式進行各種變換,了解其不同的變化形式.
將公式中的字母想像成抽象的框架,達到自如地應用公式.
五、數學定理的學習方法.
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題.
下面我們歸納出數學定理的學習方法:
背誦定理.
分清定理的條件和結論.
理解定理的證明過程.
應用定理證明有關問題.
體會定理與有關定理和概念的內在關系.
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行.
六、初學幾何證明的學習方法.
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展.
看題畫圖.(看,寫)
審題找思路(聽老師講解)
閱讀書中證明過程.
回憶並書寫證明過程.
七 .提高幾何證明能力的化歸法.
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧.這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的.
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束.此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程.
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論.
2.畫圖,作輔助線,尋找證題途徑.
3.記錄證題途徑的各個關鍵步驟.
4.總結證明思路,使證題過程在大腦中形成清淅的印象.
八、波利亞解題思考方法.
預見法
收集資料,進行組織.
辨認與回憶,充實與重新安排.
分離與組合.
回顧
解答問題法.
弄清問題.
擬定問題.
實現計劃.
回顧.
解題過程自問法.
我選擇的是怎樣的一條解題途徑.
我為什麼作出這樣的選擇?
我現在已進行到了哪一階段?
這一步的實施在整個解題過程中具有怎樣的地位?
我目前所面臨的主要困難是什麼?
解題的前景如何?
九 、數學學習的基本思維方法.
1. 觀察與實驗
2.分析與綜合
3.抽象與概括
4.比較與分類
5.一般化與特殊化
6.類比聯想與歸納猜想
十、理解、鞏固、應用、系統化四步學習法
1.理 內容,標志,階段,過程.
2.鞏 固:透徹理解,牢固記憶,多方聯想,合理復習.
3.應 用:理論,實踐,具體,綜合.
4.系統化: ①明確系統內部各要素的屬性.
②使各要素之間形成多方的聯系.
③概括各要素的各種屬性,形成整體性.
④同化於原知識系統之中.
十一、高效學習方法在數學學習中的應用
超級學習方法
請採納,謝謝
10. 怎樣能快速背課文,數學概念
背課文要提高效率,可試用以下方法:
1、注意力高度集中;
2、預定目標,設定一個比較合適的時間限定,適當留有餘地,逐步提高要求;
3、首先要把課文內容理解;
4、分段背誦;
一,串背法。即在草紙上寫下每一句的第一個字或者第一個詞,
二、做動作。把內容變成你喜愛的動作,一邊背一邊做。
三、繪畫法,把內容繪成一幅圖畫。然後看著圖畫背課文。
四、讀文章,想畫面。