1. 高等數學包括哪些內容
函式與極限、導數與微分、導數的應用、不定積分、空間解析幾何、多元函式的微分學、多元函式積分學、常微分方程、無窮級數
高等數學主要就是微積分~~~~
一、函式與極限常量與變數
函式
函式的簡單性態
反函式
初等函式
數列的極限
函式的極限
無窮大量與無窮小量
無窮小量的比較
函式連續性
連續函式的性質及初等函式函式連續性
二、導數與微分
導數的概念
函式的和、差求導法則
函式的積、商求導法則
復合函式求導法則
反函式求導法則
高階導數
隱函式及其求導法則
函式的微分
三、導數的應用
微分中值定理
未定式問題
函式單調性的判定法
函式的極值及其求法
函式的最大、最小值及其應用
曲線的凹向與拐點
四、不定積分
不定積分的概念及性質
求不定積分的方法
幾種特殊函式的積分舉例
五、定積分及其應用
定積分的概念
微積分的積分公式
定積分的換元法與分部積分法
廣義積分
六、空間解析幾何
空間直角座標系
方向餘弦與方向數
平面與空間直線
曲面與空間曲線
七、多元函式的微分學
多元函式概念
二元函式極限及其連續性
偏導數
全微分
多元復合函式的求導法
多元函式的極值
八、多元函式積分學
二重積分的概念及性質
二重積分的計演演算法
三重積分的概念及其計演演算法
九、常微分方程
微分方程的基本概念
可分離變數的微分方程及齊次方程
線性微分方程
可降階的高階方程
線性微分方程解的結構
二階常系數齊次線性方程的解法
二階常系數非齊次線性方程的解法十、無窮級數
這個問的也太泛了吧→_→工科生怒答,高等數學只是大一的數學一部分(因為還有線性代數),內容主要包括微分(簡單理解為導數滿去了←_←)和積分,一般先教一元函式的微積分,再深入教多元函式。大二以後學的一般是概率論以及復變函式這些數學課了
你好!內容包含: 一、 函式與極限 二、導數與微分 三、導數的應用 四、不定積分 五、定積分及其應用 六、空間解析幾何 七、多元函式的微分學 八、多元函式積分學 九、常微分方程 十、無窮級數 主要包括的科目有:微積分,數理統計等。 其實,高中就有涉及,高數只是深化了一些。 謝謝!
高等數學,線性代數,概率論與數理統計 三大類
函式與極限、導數與微分、導數的應用、不定積分、空間解析幾何、多元函式的微分學、多元函式積分學、常微分方程、無窮級數
總要求中充分考慮到高等教育的特點及考生所受教育的不同學習背景,本著側重考查考生的基本素質的主旨思想,規定了復習考試范圍、能力考核要求以及測試目標:
專升本<高等數學二>內容包括四個部分:考核范圍是函式、極限和連續、一元函式微分學、一元函式積分學和多元函式微積分初步等四個部分;
三個重點:考核重點是四個知識部分的基本概念、基本理論和基本方法;
三個能力:考核能力要求是應具有一定的抽象思維能力、邏輯推理能力和准確的運算能力;
一個聯絡及一個綜合;即應注意知識結構及各部分知識之間的內在聯絡,並且能綜合運用所學知識,分析及解決簡單的實際問題。
數一的話就全考,包括線性代數和概率統計,但是數三就不考概率,估計你們專業是考數一的,加油
2. 高等數學包括哪些內容
包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。
大學數學學內容:
1、極限
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。
2、微積分
微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。
3、空間解析幾何
藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。
3. 高等數學包括哪些內容
一、函數與極限常量與變數
函數
函數的簡單性態
反函數
初等函數
數列的極限
函數的極限
無窮大量與無窮小量
無窮小量的比較
函數連續性
連續函數的性質及初等函數函數連續性
二、導數與微分
導數的概念
函數的和、差求導法則
函數的積、商求導法則
復合函數求導法則
反函數求導法則
高階導數
隱函數及其求導法則
函數的微分
三、導數的應用
微分中值定理
未定式問題
函數單調性的判定法
函數的極值及其求法
函數的最大、最小值及其應用
曲線的凹向與拐點
四、不定積分
不定積分的概念及性質
求不定積分的方法
幾種特殊函數的積分舉例
五、定積分及其應用
定積分的概念
微積分的積分公式
定積分的換元法與分部積分法
廣義積分
六、空間解析幾何
空間直角坐標系
方向餘弦與方向數
平面與空間直線
曲面與空間曲線
七、多元函數的微分學
多元函數概念
二元函數極限及其連續性
偏導數
全微分
多元復合函數的求導法
多元函數的極值
八、多元函數積分學
二重積分的概念及性質
二重積分的計演算法
三重積分的概念及其計演算法
九、常微分方程
微分方程的基本概念
可分離變數的微分方程及齊次方程
線性微分方程
可降階的高階方程
線性微分方程解的結構
二階常系數齊次線性方程的解法
二階常系數非齊次線性方程的解法十、無窮級數
4. 高等數學學什麼
如果是自學,要求不太高,不要學什麼數學分析,工科數學分析,比較難;數學分析一般是數學系的人學。
高等數學和線性代數一般學校是分開上。
高等數學的內容如下:
1.一元函數的極限和連續。理論證明比如ε-N,ε-X,ε-δ,不需學得深;夾逼定理和單調有界蠻重要的,一些等價代換要掌握;函數的連續性好好學,不難.
2.一元函數微分學.求導一定一定要學好,否則你學定積分就要痛苦了;微分的實質是求導;微分學基本定理,lagrange中值定理一定要好好學,證明題基本靠它;L'Hospital相當重要;泰勒公式證明題中常用.
3.一元函數積分學.變限函數好好學吧;分部積分法和換元積分法也好好學吧;這部分內容會有大量的應用題.
4.常微分方程.具體內容不說了,反正不難,但很煩很煩,把公式背背熟就可以了.
5.多元函數微分學.不止是多元,內容是多多了.復變函數出來了.
6.多元函數積分學.二重、三重積分出來了,涉及第一型曲線及曲面計算。
7.向量函數的積分。涉及第二型曲線和曲面的計算。
8.復變函數的積分。柯西積分定理是基礎是重點,lz看著辦吧。
9.常數項級數。
10.函數項級數。
lz,線形代數要學,否則高數後面的內容你會學得很費勁;但是,線形代數也是很煩的,因為內容實在太多了,但都不是很深,基本圍繞三點:用矩陣解方程組、用矩陣解釋二次型、特徵值及其變換(正交變換很重要)。
希望能對lz所有幫助。
5. 高數主要學習些什麼
2020年春季學期微課徐世松高等數學(超清視頻)網路網盤
鏈接: https://pan..com/s/1qUNZZW_DHwJHP8kDpvZ-zg
若資源有問題歡迎追問~
6. 高等數學都學些什麼東西呀
高等數學課程分為兩個學期進行學習。它的教學內容通常包含一元函數微積分、多元函數微積分、空間解析幾何與向量代數初步、微分方程初步、場論初步等。通過該課程的教學,不但使學生具備學習後續其他數學課程和專業課程所需要的基本數學知識,而且還使學生在數學的抽象性、邏輯性與嚴密性方面受到必要的訓練和熏陶,使他們具有理解和運用邏輯關系、研究和領會抽象事物、認識和利用數形規律的初步能力。因此,高等數學教學不僅關繫到學生在整個大學期間甚至研究生期間的學習質量,而且還關繫到學生的思維品質、思辨能力、創造潛能等科學和文化素養。高等數學教學既是科學的基礎教育,又是文化基礎教育,是素質教育的一個重要的方面。
7. 大學數學學什麼內容
大學數學一般是高等數學,包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
數學分析課程的內容一般由極限論、一元微積分、級數論和多元微積分這四大部分所組成,其中一元微積分對應了通常國外所說的「初等微積分」課程,而極限論、級數論和多元微積分這三部分則對應了國外所說的「高等微積分」課程。極限理論的主要內容有:數列的極限、函數的極限、連續函數、關於實數的基本定理、以及閉區間上連續函數的性質。
大學數學學習技巧
第一、大學的數學非常注重邏輯,課前的預習有助於學好大學數學,一可以發現不懂的,二可以在正式課程上加深印象。
第二,重點掌握關鍵公式,大學數學不會考得太深,基本是學會了相關的內容,考試就考這么些內容,所以公式必定要爛熟於心。
第三,練習是很重要的,大學數學雖然考得不深,但是學生常有,上課聽老師說,明白。但是課後自己做題,卻發現不會。這就是沒有熟練的典型特徵
第四,考試復習的時候,一定要聽老師在考試前一節課給你們講的題,或者老師劃的重點。大學的考試,老師說什麼,考試幾乎就考什麼的。
8. 高等數學包括哪些
問題一:高等數學包含哪些內容,有哪些科目 你好!內容包含:
一、 函數與極限
二、導數與微分
三、導數的應用
四、不定積分
五、定積分及其應用
六、空間解析幾何
七、多元函數的微分學
八、多元函數積分學
九、常微分方程
十、無窮級數
主要包括的科目有:微積分,數理統計等。
其實,高中就有涉及,高數只是深化了一些。
謝謝!
問題二:高數一包括哪些內容 具體專業的數學要求不同的,各個高校可能會有自己相關的調整,最好直接向報考高校咨詢,以下是全國統考數學的分類:
數學一:
1、高等數學(函數、極限、連續、一元函數的微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程);
2、線性代數;
3、概率論與數理統計。
數學二:
1、高等數學(函數、極限、連續、一元函數微積分學、微分方程);
2、線性代數。
數學三:
1、高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);
2、線性代數;
3、概率論與數理統計。
數學四:
1、高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、常微分方程);
2、線性代數;
3、概率論
參考文獻:中國研究生招生信息網
問題三:高等數學包括哪些內容 1. 2005年數學考試大綱的修訂說明與評述
(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學一、數學二、數學三和數學四。
(2) 數學一、二試卷高等數學部分,「函數、極限、連續」的考試要求的第4條增加「了解初等函數的概念」的要求。
原為「掌握基本初等函數的性質及其圖形」。變為「掌握基本初等函數的性質及其圖形,了解初等函數的概念」。
評述:進一步強調基礎知識點。
(3)
數學一試卷高等數學部分,「多元函數微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函數微積分學」的考試要求的第3條,將原來的「會用隱函數的求志法則」改為「了解隱函數存在定理,會求多元隱函數的偏導數」。
評述:進一步強調基礎知識點與概念理解的重要性。
(4) 數學三、四試卷高等數學部分,「函數、極限、連續」的考試要求的第3條,將「理解反函數、隱函數的概念」改為「了解反函數、隱函數的概念」,
原為「理解復合函數、反函數、隱函數和分段函數的概念」。變為「理解復合函數及分段函數的概念,了解反函數及隱函數的概念」。
評述:進一步強調基礎知識點。
「一元函數微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。
原為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。
變為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」
評述:進一步強調基礎知識點,進一步提升對考生能力的要求。
(5)
數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。
原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。
評述:進一步提升對考生能力的要求。
(6) 對數學一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規范和統一。
(7) 對數學一、二試卷的樣卷進行了修訂。
(8)
對數學一、二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規范和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。
2.2005年考研數學特點
2005考研數學試卷將進一步加大對考生掌握數學基礎知識的准確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2004年的水平。
2004年數學試題是近5年以來較容易也是最基本的一套試題。
2005年大綱維持2004年要求基本不變。只是進一步加強了對基礎性知識點的重視與規范化要求。如:一元微分學中:增加了「接初等函數的概念准確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「了解隱函數存在定理,會求多元隱函數的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。准確而全面的概念理解與過硬的基本計算能力,將是2005年考生取勝的關鍵。加強知識的基礎性、系統綜合性與交叉性的訓練,努力提升對知識的洞察力,以不變應萬變,排除誤導,是我們的建議。
關於2005考研試題的特點與結......>>
問題四:考研的高等數學一包括哪些 考研數一一共包括四本書!兩本高數(同濟五版,綠色封皮)線性代數(同濟四版,紫色封皮)概率論與數理統(浙大的三版)這就考研數一用書,不分文理的!
問題五:高數有哪些分類,急求!!!! 高等數學通常分為高數A、高數B、高數C三類。
高數A對應理工類專業(數學專業不學高數,而是學難度更大的數學分析。)
高數B對應經管類專業
高數C對應文史類專業(語言類專業不學高數;法學專業有些學校學高數C,有些學校例如華政不學高數。)
高數B與高數A的區別總體上說就是:
1、A的難度和知識的廣度要高於B,因此A的課時比B要多
2、A主要偏向於理工科的知識結構范圍,B偏向於經濟類的計算
3、一般來說把A都搞得很好了,考B一般也會很好。
4、高數A、B的教學基本要求和歷屆考題高數老師應該會讓你們買。
5、高數A、B是混不過去的,所以上課一定要去,作業一定要自己做。混的話,不管你高中數學有多好,都會掛得很慘的。
6、如果要問高數的具體難度,可以到書店翻一下歷年的伐研題,學校考試不會高於這個難度。
理工類高數包括:
一、與高數B共同內容
1. 函數、極限、連續
2. 一元函數微積分
3. 多元函數微積分
4. 級數
5. 常微分方程
二、A要求但B不要求
(1) 掌握基本初等函數的性質和圖形
(2) 掌握極限存在的二個准則,並會利用它們求極限
(3) 會用導數描述一些簡單的物理量
(4) 了解曲率,曲率半徑的概念,並會計算
(5) 了解求方程近似解的二分法和切線法
(6) 了解曲線的切線和法平面及曲面的切平面和法線的的概念,會求它們的方程
(7) 三重積分
(8) 曲線曲面積分
(9) 向量代數與空間解析幾何
高等數學與高中聯系不大,只有函數、極限和空間向量是從高中過渡的內容。但是函數的基礎一定要打好!否則苦海無邊,到時還要重翻高中課本。
問題六:高等數學包括哪些范圍?有加分!!! 10月19日 09:22 這和您報考學校專業的具體要求有關,數二不考線性代數、數三、數四屬於經濟數學。
1. 2005年數學考試大綱的修訂說明與評述
(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學一、數學二、數學三和數學四。
(2) 數學一、二試卷高等數學部分,「函數、極限、連續」的考試要求的第4條增加「了解初等函數的概念」的要求。
原為「掌握基本初等函數的性質及其圖形」。變為「掌握基本初等函數的性質及其圖形,了解初等函數的概念」。
評述:進一步強調基礎知識點。
(3)
數學一試卷高等數學部分,「多元函數微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函數微積分學」的考試要求的第3條,將原來的「會用隱函數的求志法則」改為「了解隱函數存在定理,會求多元隱函數的偏導數」。
評述:進一步強調基礎知識點與概念理解的重要性。
(4) 數學三、四試卷高等數學部分,「函數、極限、連續」的考試要求的第3條,將「理解反函數、隱函數的概念」改為「了解反函數、隱函數的概念」,
原為「理解復合函數、反函數、隱函數和分段函數的概念」。變為「理解復合函數及分段函數的概念,了解反函數及隱函數的概念」。
評述:進一步強調基礎知識點。
「一元函數微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。
原為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。
變為「理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」
評述:進一步強調基礎知識點,進一步提升對考生能力的要求。
(5)
數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。
原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。
評述:進一步提升對考生能力的要求。
(6) 對數學一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規范和統一。
(7) 對數學一、二試卷的樣卷進行了修訂。
(8)
對數學一、二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規范和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。
2.2005年考研數學特點
2005考研數學試卷將進一步加大對考生掌握數學基礎知識的准確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2004年的水平。
2004年數學試題是近5年以來較容易也是最基本的一套試題。
2005年大綱維持2004年要求基本不變。只是進一步加強了對基礎性知識點的重視與規范化要求。如:一元微分學中常增加了「接初等函數的概念准確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「了解隱函數存在定理,會求多元隱函數的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。准確而全面的概念理解與過硬的基本計算能力,將是2005年考生取勝的關鍵。加強知識的基礎性、系統綜合性與交叉性......>>
問題七:大專高等數學(一)包含哪些內容 大專高等數學(一),指的是自學考試大專所用的高等數學教材。包含的內容有:
1、函數。包括初等代數、 *** 與邏輯符號等預備知識,函數的概念與圖形,三角函數、指數函數、對數函數,以及經濟學中的常用函數、需求函數與供給函數、成本函數、收益函數與利潤函數。
2、極限與連續。包括函數極限的概念、函數極限的性質與運算,無窮小量與無窮大量,連續函數的概念與性質。
3、導數與微分。包括導數的運算,幾種特殊函數的求導法、高階導數。
4、微分中值定理和導數的應用。包括微分中值定理,洛必達法則,函數單調性的判定,函數的極值及其求法,函數的最值及其應用,曲線的凹凸性和拐點,曲線的漸近線,導數的經濟分析中的應用。
5、一元函數積分學。包括原函數與不定積分的概念,幾本積分公式,換元積分法,分部積分法,微分方程初步,定積分的概念及其基本性質,微積分基本定理,定積分的換元積分法和分部積分法,反常積分,定積分的應用。
6、多元函數微積分。包括多元函數的基本概念,偏導數,全微分,多元復合函數的求導法則,隱函數的求導法則,二元函數的極值,二重積分。