Ⅰ 空瓶換水問題公式是什麼
空瓶換水問題的公式:已知換水規則(n個空瓶可換1瓶水)及空瓶總數m,最多可免費喝到的水=取整數部分數值。其實,數量關系也有許多題型是非常有趣的,統籌問題就是其中之一。利用數學來研究人力、物力的運用和籌劃,使它們能發揮最大效率。
例題:
1、直接套公式:已知規則及空瓶數,求最多能喝到的水數。
例1:若12個礦泉水空瓶可以免費換1瓶礦泉水,現有101個礦泉水空瓶,最多可以免費喝到幾瓶礦泉水?
【中公解析】12空瓶=1瓶水=1空瓶+1份水,即11空瓶=1份水。,101是11的101/11倍,所以最多能免費喝到的水數=(101/11)*1≈9。若在「12個空瓶換5瓶水」的規則下,問101個礦泉水空瓶,最多可以免費喝到幾瓶礦泉水?101是7的101/7倍,所以最多能免費喝到的水數=(101/7)*5≈72。
2、間接用公式:已知規則及喝到的水數,求至少應買多少瓶水。
例2:六個空瓶可以換一瓶汽水,某班同學喝了213瓶汽水,其中一些是用喝後的空瓶換來的,那麼,他們至少要買多少瓶汽水?
【中公解析】六個空瓶可以換一瓶汽水,即5空=1份汽水,設他們至少買汽水x瓶。則換回汽水份數=x/5,根據題意有:x+x/5=213,解得:x=177.5。所以他們至少買178瓶汽水。
Ⅱ 空瓶換汽水的奧數問題是什麼
空瓶換汽水的奧數問題是,三個空瓶可換一瓶汽水,買10瓶汽水,共可喝汽水多少瓶。
解析,10瓶汽水喝完了得到10個空瓶子,可以換10除以3等於3瓶汽水,還剩下一個空瓶子,這3瓶汽水喝完又得到3個空瓶子,又可以換3除以3等於1瓶汽水,還有前面的1個空瓶子,再喝完後就剩2個空瓶子,這時我們說先跟店主借一個空瓶子,就有3個空瓶子了,於是,可以換3除以3等於1瓶汽水,喝完後將空瓶子還給店主。所以,總共能喝汽水10加3加1加1等於15瓶。
奧數問題的作用
奧數相對比較深,數學奧林匹克活動的蓬勃發展,極大地激發了廣大少年兒童學習數學的興趣,成為引導少年積極向上,主動探索,健康成長的一項有益活動,有許多涉及到實際應用的問題,如計數,圖論,邏輯,抽屜原理等。
解決這類問題,一般都需要對實際問題的數學意義進行分析,歸納,把實際問題抽象成為數學問題,然後用相應的數學知識和方法去解決,在這一構造數學模型的過程中,能夠有效地培養學生用數學觀點看待和處理實際問題的能力,提高學生用數學語言和模型解決實際問題的意識和能力,提高學生揭示實際問題中隱含的數學概念及其關系的能力等等。
使學生能夠在這一創造性思維過程中,看到數學的實際作用,感受到數學的魅力,增強學生對數學美的感受力,在強調素質教育的今天,奧林匹克數學的這一教育功能有著更為重要的現實意義。
Ⅲ 數學空瓶換酒問題
公式的意思是當你剩3瓶酒,一個空瓶時,先喝掉3瓶,那麼有四個空瓶。
先欠一空瓶換一瓶酒,喝掉後再把空瓶還過去,剛好。