A. 數學期望的含義是什麼
在概率論和統計學中,數學期望是試驗中每次可能結果的概率乘以其結果的總和。是最基本的數學特徵之一。它反映隨機變數平均取值的大小。需要注意的是,期望值並不一定等同於常識中的「期望」,「期望值」也許與每一個結果都不相等。也可以說,期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。
B. 「數學期望」的意義是什麼
定義1
按照定義,離散隨機變數的一切可能取值與其對應的概率P的乘積之和稱為數學期望,記為E.如果隨機變數只取得有限個值:x,y,z,...則稱該隨機變數為離散型隨機變數。
定義2
決定可靠性的因素常規的安全系數是根據經驗而選取的,即取材料的強度極限均值(概率理論中稱為數學期望)與工作應力均值(數學期望)之比。
C. 數學期望的定義及其幾何意義是什麼
1.什麼是數學期望?
數學期望亦稱期望、期望值等。在概率論和統計學中,一個離散型隨機變數的期望值是試驗中每一次可能出現的結果的概率乘以其結果的總和。
這是什麼意思呢?假如我們來玩一個游戲,一共52張牌,其中有4個A。我們1元錢賭一把,如果你抽中了A,那麼我給你10元錢,否則你的1元錢就輸給我了。在這個游戲中,抽中的概率是113(452)113(452),結果是贏10元錢;抽不中概率是12131213,結果是虧1元錢。那麼你贏的概率,也就是期望值是−213−213。這樣,你玩了很多把之後,一算賬,發現平均每把會虧−213 −213元。一般在競賽中,若X是一個離散型的隨機變數,可能值為x1,x2x1,x2……,對應概率為p1,p2p1,p2……,概率和為1,那麼期望值E(X)=∑ipixiE(X)=∑ipix
Proof:
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
因為X,YX,Y互相獨立
E(XY)=E(X)E(Y)
E(XY)=E(X)E(Y)
代入上式便得
Var(X+Y)=Var(X)+Var(Y)
Var(X+Y)=Var(X)+Var(Y)
從證明過程看獨立條件必不可少。由於方差是由期望定義的,所以方差的一切性質可由期望導出,可見期望的概念要比方差重要。
D. 如何理解數學期望的意義
數學期望的常用性質:
1.設X是隨機變數,C是常數,則E(CX)=CE(X)
2.設X,Y是任意兩個隨機變數,則有E(X+Y)=E(X)+E(Y).
3.設X,Y是相互獨立的隨機變數,則有E(XY)=E(X)E(Y)
在統計學中,當估算一個變數的期望值時,一個經常用到的方法是重復測量此變數的值,然後用所得數據的平均值來作為此變數的期望值的估計。
在概率分布中,期望值和方差或標准差是一種分布的重要特徵。
E. 數學期望的意義是什麼
數學期望
mathematical expectation
隨機變數最基本的數學特徵之一。它反映隨機變數平均取值的大小。又稱期望或均值。它是簡單算術平均的一種推廣。例如某城市有10萬個家庭,沒有孩子的家庭有1000個,有一個孩子的家庭有9萬個,有兩個孩子的家庭有6000個,有3個孩子的家庭有3000個, 則此城市中任一個家庭中孩子的數目是一個隨機變數,它可取值0,1,2,3,其中取0的概率為0.01,取1的概率為0.9,取2的概率為0.06,取3的概率為0.03,它的數學期望為0×0.01+1×0.9+2×0.06+3×0.03等於1.11,即此城市一個家庭平均有小孩1.11個。
數學期望的定義
定義1:
按照定義,離散隨機變數的一切可能值工與對應的概率P(若二龍)的乘積之和稱為數學期望,記為咐.如果隨機變數只取得有限個值:x,、瓜、兀
源自: 擋土牆優化設計與風險決策研究——兼述黃... 《南水北調與水利科技》 2004年 勞道邦,李榮義
來源文章摘要:擋土牆作為一般土建工程的攔土建築物常用在閘壩翼牆和渡槽、倒虹吸的進出口過渡段,它的優化設計問題常被忽視。實際上各類擋土牆間的技術和經濟效益差別是相當大的。而一些工程的現實條件又使一些常用擋土牆呈現出諸多方面局限性。黃壁庄水庫除險加固工程的混凝土生產系統的擋土牆建設在優化設計方面向前邁進了一步,在技術和經濟效益方面取得明顯效果,其經驗可供同類工程建設參考。
定義2:
1 決定可靠性的因素常規的安全系數是根據經驗而選取的,即取材料的強度極限均值(概率理論中稱為數學期望)與工作應力均值(數學期望)之比
F. 數學期望是什麼意思
數學期望是一種重要的數字特徵,它反映隨機變數平均取值的大小,是試驗中每次可能結果的概率乘以其結果的總和。這里的「期望」一詞來源於賭博,大概意思是當下注時,期望贏得多少錢。
數學期望按照定義,離散隨機變數的一切可能取值與其對應的概率P的乘積之和稱為數學期望,記為E.如果隨機變數只取得有限個值:x,y,z,...則稱該隨機變數為離散型隨機變數。
應用
假設某一超市出售的某種商品,每周的需求量X在10至30范圍內等可能取值,該商品的進貨量也在10至30范圍內等可能取值(每周只進一次貨)超市每銷售一單位商品可獲利500元,若供大於求,則削價處理,每處理一單位商品虧損100元;若供不應求,可從其他超市調撥,此時超市商品可獲利300元。試計算進貨量多少時,超市可獲得最佳利潤,並求出最大利潤的期望值。
以上內容參考:網路-數學期望
G. 求高手講講數學期望的意義
數學期望就是對於一個隨機事件,用數學的方法來估計它最大可能得到的結果。
例如某城市有10萬個家庭,沒有孩子的家庭有1000個,有一個孩子的家庭有9萬個,有兩個孩子的家庭有6000個,有3個孩子的家庭有3000個,
則此城市中任一個家庭中孩子的數目是一個隨機變數,記為X,它可取值0,1,2,3,其中取0的概率為0.01,取1的概率為0.9,取2的概率為0.06,取3的概率為0.03,它的數學期望為0×0.01+1×0.9+2×0.06+3×0.03等於1.11,即此城市一個家庭平均有小孩1.11個,用數學式子表示為:E(X)=1.11。
也就是說,我們用數學的方法分析了這個概率性的問題,對於每一個家庭,最有可能它家的孩子為1.11個。
你可以簡單的理解為求一個概率性事件的平均狀況。
H. 數學期望是什麼意思
E(x)指數學期望。
數學期望是一種重要的數字特徵,它反映隨機變數平均取值的大小,是試驗中每次可能結果的概率乘以其結果的總和。這里的「期望」一詞來源於賭博,大概意思是當你下注時,期望贏得多少錢。
期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。
(8)什麼是數學期望意義擴展閱讀
應用:
1、隨機炒股
隨機炒股也就是閉著眼睛在股市中挑一隻股票,並且假設止損和止盈線都為10%,因為是隨機選股,那麼勝率=敗率,由於印花稅、傭金和手續費的存在,勝率=敗率<50%,最後的數學期望一定為負,可見隨機炒股,長期的後果,必輸無疑。
3、價值投資
由於價值低估買,所以勝率比較高,且價值投資都預留安全邊際,也就是向上的空間巨大,而下跌空間有限,所以數學期望值一定為正。
I. 數學期望是什麼嘛意思 數學期望介紹
1、數學期望(mean)是最基本的數學特徵之一,運用於概率論和統計學中,它是每個可能結果的概率乘以其結果的總和。它反映了隨機變數的平均值。
2、需要注意的是,期望並不一定等同於常識中的「期望」——「期望」未必等於每一個結果。期望值是變數輸出值的平均值。期望不一定包含在變數的輸出值集合中。
3、大數定律規定,當重復次數接近無窮大時,數值的算術平均值幾乎肯定會收斂到期望值。