『壹』 6個數字有多少種組合
6個數字如果互不相同,那麼有A(6,6)=720種排列方式。
但是有3組兩個相同的,所以需要除以A(2,2)A(2,2)A(2,2)=8
所以最後有720÷8=90種排列方式。
從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。
計算公式:
;C(n,m)=C(n,n-m)。(n≥m)
其他排列與組合公式 從n個元素中取出m個元素的循環排列數=A(n,m)/m=n!/m(n-m)!. n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為 n!/(n1!×n2!×...×nk!). k類元素,每類的個數無限,從中取出m個元素的組合數為C(m+k-1,m)。
【例1】從1、2、3、……、20這二十個數中任取三個不同的數組成等差數列,這樣的不同等差數列有多少個。
分析:首先要把復雜的生活背景或其它數學背景轉化為一個明確的排列組合問題。
設a,b,c成等差,
∴ 2b=a+c,可知b由a,c決定,
又∵ 2b是偶數,∴ a,c同奇或同偶,即:分別從1,3,5,……,19或2,4,6,8,……,20這十個數中選出兩個數進行排列,由此就可確定等差數列,A(10,2)*2=90*2,因而本題為180。