A. 初中數學幾何證明題輔助線怎麼畫有什麼技巧嗎
人說幾何很困難,難點就在輔助線。
輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
幾何證題難不難,關鍵常在輔助線;
知中點、作中線,中線處長加倍看;
底角倍半形分線,有時也作處長線;
線段和差及倍分,延長截取證全等;
公共角、公共邊,隱含條件須挖掘;
全等圖形多變換,旋轉平移加折疊;
中位線、常相連,出現平行就好辦;
四邊形、對角線,比例相似平行線;
梯形問題好解決,平移腰、作高線;
兩腰處長義一點,亦可平移對角線;
正餘弦、正餘切,有了直角就方便;
特殊角、特殊邊,作出垂線就解決;
實際問題莫要慌,數學建模幫你忙;
圓中問題也不難,下面我們慢慢談;
弦心距、要垂弦,遇到直徑周角連;
切點圓心緊相連,切線常把半徑添;
兩圓相切公共線,兩圓相交公共弦;
切割線,連結弦,兩圓三圓連心線;
基本圖形要熟練,復雜圖形多分解;
以上規律屬一般,靈活應用才方便。
B. 初中數學幾何做輔助線技巧
輔助線一直都是解決幾何問題中不可或缺的,通過輔助線的有效添加,不僅可以使得相應問題得到更好、更便捷的解答,也能夠給學生留下更深刻的印象。下面是我為大家整理的關於初中數學幾何做輔助線技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
1初中數學幾何做輔助線技巧
輔助線在三角形中的科學運用
對於三角形中輔助線的添加來講,主要是結合問題特點與需求來進行輔助線的科學運用。例如,在無法利用現有條件將三角形三邊關系直接證明出來時,可以將其中一邊延長,也可以通過將其兩點連接來構成三角形,以此來得出其線段在一個或是多個三角形中的結論,然後再利用三角形三邊的不等關系來進行證明;又如:在無法利用現有條件將三角形外角大於任何不與其相鄰的內角這一定義直接證明出來時,就可以引導學生將某一邊延長,或者是通過連接其中兩點構成三角形,以此來讓其小角位於其圖形的內角,之後再證明出其大角處於其三角形的外角位置,在此基礎上再運用相應外角定理來最終解答。此外,若題目中給出了平分線時,通常都是在其角的兩邊取相同的線段來構成全等三角形等。
上述只是 總結 了三角形輔助線比較常見的添加方式,但是對於數學輔助線的應用來講,通常都是法無定法的,因此,要想將輔助線的積極作用充分發揮出來,並在解題中實現科學靈活運用,往往還是需要在實踐解題練習中不斷歸納與總結,不僅可以單獨添加,也可以結合實際情況,進行恰當的組合運用,也只有這樣在解答相應題目過程中才能夠真正做到有的放矢,才能夠引導學生真正掌握其運用規律與技巧,因此,出了總結、歸納外,其數學教師還應結合學生實際認知需求,積極為學生設計針對性較強的練習活動。
輔助線在平行四邊形中的恰當運用
平行四邊形主要包括正方形、菱形,以及矩形,這些圖形的兩組對邊、對角等具有的性質都有一定的相似之處,所以,輔助線在這些圖形中的添加 方法 一般都具有較大的相似性,往往都是為了實現線段的垂直與平行,在此基礎上構成相應的全等、相似三角形。通常情況下,都是平移、連接圖形對角線,或者是結合實際情況連接其中一邊的中點與頂點等方式,從而將平行四邊形巧妙轉化成相應的矩形、三角形等圖形,這樣再分析解決其該題目則更加便捷。
例如,在解答下面這道題目時:已知AB與CD平行,BC平行於AD,證明,CD=AB。 在解答這道題目時,教師就可以通過添加輔助線AC來將圖形分割成兩個三角形進行證明。解答如下: 證明:連接AC。因為AB與CD平行,BC與AD平行,結合兩直線平行、內錯角相等的定理,所以∠1=∠2,∠3=∠4。在△ABC與△CDA中,因為∠1=∠2,∠4=∠3,CA=AC,所以根據角邊角定理可以得出△ABC≌三角形CDA,在結合全等三角形的對應邊相等定理可以得出AB=CD。通過指導學生將平行四邊形分割成兩個三角形,學生就可以輕松點運用三角形的相關知識來證明其對邊相等,讓其在此過程中掌握較為典型的輔助線添加方法,也更便捷的解答此題目。
2基本圖形的輔助線的畫法
三角形問題添加輔助線方法
方法1:有關三角形中線的題目,常將中線加倍.含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題. 方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題. 方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理.
平行四邊形中常用輔助線的添法
平行四邊形(包括矩形、正方形、菱形)輔助線通常是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法包括連對角線或平移對角線、過頂點作對邊的垂線構造直角三角形、連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線、過頂點作對角線的垂線,構成線段平行或三角形全等.
圓中常用輔助線的添法
在平面幾何中,解決與圓有關的問題時,常常需要添加輔助線的方法包括見弦作弦心距、見直徑作圓周角、見切線作半徑、兩圓相切作公切線、兩圓相交作公共弦等方法.
梯形中常用輔助線的添法
梯形是一種特殊的四邊形.它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決.輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內部平移一腰;(2)梯形外平移一腰;(3)梯形內平移兩腰;(4)延長兩腰;(5)過梯形上底的兩端點向下底作高;(6)平移對角線;(7)作中位線等.
3數學初中證明題技巧
讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置.?
要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論,然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習.?
要記.
這里的記有兩層意思.第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來.如給出對邊相等,就用邊相等的符號來表示;第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來.?
對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生.
4初中數學幾何證明題技巧
牢記幾何語言
幾何證明題,要使用幾何語言,這對於剛學幾何的學生來說,僅當又學一門「外語」,並努力盡快地掌握這門「外語」的語言使用和表達能力。
首先,從幾何第一課起,就應該特別注意幾何語言的規范性,要讓學生理解並掌握一些規范性的幾何語句。如:「延長線段AB到點C,使AC=2AB」,「過點C作CD⊥AB,垂足為點D」,「過點A作l∥CD」等,每一句通過上課的教學,課後的輔導,手把手的作圖,表達幾何語言;表達幾何語言後作圖,反復多次,讓學生理解每一句話,看得懂題意。
其次,要注意對幾何語言的理解,幾何語言表達要確切。例如:鈍角的意義是「大於直角而小於平角的叫鈍角」,「大於直角或小於平角的角叫鈍角」,把「而」字說成了「或」字,這就是學習對幾何語言理解不佳,造成的表達不確切。「一字之差」意思各異,在輔導時,注重語言的准確性,對其犯的錯誤反復更正,做到學習之初要嚴謹。
規范推理格式
數學中推理證明的書寫格式有許多種,但最基本的是演繹法,也就是從已知條件出發,根據已經學過的數學概念、公理、定理等知識,順著推理,由「已知」得「推知」,由「推知」得「未知」,逐步地推出求證的結論來。這種證題格式一般叫「演繹法」,課本上的定理證明,例題的證明,多數是採用這種格式。它的書寫形式表達常用語言是「因為…,所以…」特別是一開始學習幾何證明,首先要掌握好這種推理格式,做到規范化。
積累證明思路
「幾何證明難」最難莫過於沒有思路。怎樣積累證明思路呢?這主要靠聽講,看書時積極思考,不僅弄明白題目是「如何證明?」,還要進一步追究一下,「證明題方法是如何想出來的?」。只有經常這樣獨立思考,才會使自己的思路開闊靈活。隨著證明題難度的增加,還要教會學生用「兩頭湊」的方法,即在同一個證明題的分析過程中,分析法與綜合法並用,來縮短已知與未知之間的距離,在教學安排時,要給其足夠的時間思考,而且重復證明思路,提高對解題思路的理解和應用能力。
初中數學幾何做輔助線技巧相關 文章 :
1. 初中數學的解題技巧
2. 初二數學的重要性, 幾何常見輔助線口訣
3. 幾何大題的初中數學做題思路
4. 初二數學壓軸題答題技巧
5. 初中數學學習的一般誤區,數學學習十大技巧
6. 怎樣提高初二數學
7. 初中數學解題技巧與方法
8. 簡單高效的初中數學學習方法
9. 初中數學高效學習與解題方法
C. 初中數學做輔助線方法是怎樣的
輔助線歌訣
人說幾何很困難,難點就在輔助線。
輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
幾何證題難不難,關鍵常在輔助線;
知中點、作中線,中線處長加倍看;
底角倍半形分線,有時也作處長線;
線段和差及倍分,延長截取證全等;
公共角、公共邊,隱含條件須挖掘;
全等圖形多變換,旋轉平移加折疊;
中位線、常相連,出現平行就好辦;
四邊形、對角線,比例相似平行線;
梯形問題好解決,平移腰、作高線;
兩腰處長義一點,亦可平移對角線;
正餘弦、正餘切,有了直角就方便;
特殊角、特殊邊,作出垂線就解決;
實際問題莫要慌,數學建模幫你忙;
圓中問題也不難,下面我們慢慢談;
弦心距、要垂弦,遇到直徑周角連;
切點圓心緊相連,切線常把半徑添;
兩圓相切公共線,兩圓相交公共弦;
切割線,連結弦,兩圓三圓連心線;
基本圖形要熟練,復雜圖形多分解;
以上規律屬一般,靈活應用才方便。
D. 初中幾何證明題輔助線怎麼做
這是得看題目而定,一般來說,是需要利用題目中特殊線段的性質來做輔助線。
例如,題目有中點,考慮做中線,使用中線倍長法延長中線解題;如果是在直角三角形裡面,就有可能連完中線使用直角三角形中線等於斜邊一半來解題。
又例如,題目出現角平分線/垂直平分線,那可以利用性質向角兩邊做高/連接兩端點,都可以得出一些等量線段。
具體一定多審題,看看題目中的特殊點在哪
E. 初中數學如何做輔助線
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點,連結則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經常要作平行線。
圓外若有一切線,切點圓心把線連。
如果兩圓內外切,經過切點作切線。
兩圓相交於兩點,一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減
F. 做數學怎麼懂得做輔助線方法
幾何最難的地方就是輔助線的添加了,但是對於添加輔助線,還是有規律可循的,下面給大家分享一些關於做數學怎麼懂得做輔助線 方法 ,希望對大家有所幫助。
一.三角形中常見輔助線的添加
1. 與角平分線有關的
(1) 可向兩邊作垂線。
(2)可作平行線,構造等腰三角形
(3)在角的兩邊截取相等的線段,構造全等三角形
2. 與線段長度相關的
(1) 截長:證明某兩條線段的和或差等於第三條線段時,經常在較長的線段上截取一段,使得它和其中的一條相等,再利用全等或相似證明餘下的等於另一條線段即可
(2) 補短:證明某兩條線段的和或差等於第三條線段時,也可以在較短的線段上延長一段,使得延長的部分等於另外一條較短的線段,再利用全等或相似證明延長後的線段等於那一條長線段即可
(3)倍長中線:題目中如果出現了三角形的中線,方法是將中線延長一倍,再將端點連結,便可得到全等三角形。
(4)遇到中點,考慮中位線或等腰等邊中的三線合一。
3. 與等腰等邊三角形相關的
(1)考慮三線合一
(2)旋轉一定的度數,構造全都三角形,等腰一般旋轉頂角的度數,等邊旋轉60 °
二.四邊形中常見輔助線的添加
特殊四邊形主要包括平行四邊形、矩形、菱形、正方形和梯形.在解決一些和四邊形有關的問題時往往需 要添加輔助線。下面介紹一些輔助線的添加方法。
1. 和平行四邊形有關的輔助線作法
平行四邊形是最常見的特殊四邊形之一,它有許多可以利用性質,為了利用這些性質往往需要添加輔助線構造平行四邊形。
(1) 利用一組對邊平行且相等構造平行四邊形
(2)利用兩組對邊平行構造平行四邊形
(3)利用對角線互相平分構造平行四邊形
2. 與矩形有輔助線作法
(1)計算型題,一般通過作輔助線構造直角三角形藉助勾股定理解決問題
(2)證明或探索題,一般連結矩形的對角線藉助對角線相等這一性質解決問題.和矩形有關的試題的輔助線的作法較少.
3. 和菱形有關的輔助線的作法
和菱形有關的輔助線的作法主要是連接菱形的對角線,藉助菱形的判定定理或性質定定理解決問題.
(1)作菱形的高
(2)連結菱形的對角線
4. 與正方形有關輔助線的作法
正方形是一種完美的幾何圖形,它既是軸對稱圖形,又是中心對稱圖形,有關正方形的試題較多.解決正 方形的問題有時需要作輔助線,作正方形對角線是解決正方形問題的常用輔助線
三.圓中常見輔助線的添加
1. 遇到弦時(解決有關弦的問題時)
常常添加弦心距,或者作垂直於弦的半徑(或直徑)或再連結過弦的端點的半徑。
作用:
① 利用垂徑定理
② 利用圓心角及其所對的弧、弦和弦心距之間的關系
③ 利用弦的一半、弦心距和半徑組成直角三角形,根據勾股定理求有關量
2. 遇到有直徑時,常常添加(畫)直徑所對的圓周角
作用:利用圓周角的性質得到直角或直角三角形
3. 遇到90度的圓周角時 ,常常連結兩條弦沒有公共點的另一端點
作用:利用圓周角的性質,可得到直徑
4. 遇到弦時,常常連結圓心和弦的兩個端點,構成等腰三角形,還可連結圓周上一點和弦的兩個端點
作用: ①可得等腰三角形
②據圓周角的性質可得相等的圓周角
5. 遇到有切線時,常常添加過切點的半徑(連結圓心和切點)
作用:利用切線的性質定理可得OA⊥AB,得到直角或直角三角形
常常添加連結圓上一點和切點
作用:可構成弦切角,從而利用弦切角定理。
6. 遇到證明某一直線是圓的切線時
(1) 若直線和圓的公共點還未確定,則常過圓心作直線的垂線段。
作用:若OA=r,則l為切線
(2) 若直線過圓上的某一點,則連結這點和圓心(即作半徑)
作用:只需證OA⊥l,則l為切線
(3) 有遇到圓上或圓外一點作圓的切線
7. 遇到兩相交切線時(切線長)
常常連結切點和圓心、連結圓心和圓外的一點、連結兩切點
作用:據切線長及 其它 性質,可得到
① 角、線段的等量關系
② 垂直關系
③ 全等、相似三角形
8. 遇到三角形的內切圓時
連結內心到各三角形頂點,或過內心作三角形各邊的垂線段
作用:利用內心的性質,可得
① 內心到三角形三個頂點的連線是三角形的角平分線
② 內心到三角形三條邊的距離相等
9. 遇到三角形的外接圓時,連結外心和各頂點
作用:外心到三角形各頂點的距離相等
10. 遇到兩圓外離時(解決有關兩圓的外、內公切線的問題)
常常作出過切點的半徑、連心線、平移公切線,或平移連心線
作用: ①利用切線的性質; ②利用解直角三角形的有關知識
11. 遇到兩圓相交時 常常作公共弦、兩圓連心線、連結交點和圓心等
作用: ① 利用連心線的性質、解直角三角形有關知識
② 利用圓內接四邊形的性質
③ 利用兩圓公共的圓周的性質
④ 垂徑定理
12.遇到兩圓相切時
常常作連心線、公切線
作用: ① 利用連心線性質
② 切線性質等
13. 遇到三個圓兩兩外切時
常常作每兩個圓的連心線
作用:可利用連心線性質
14. 遇到四邊形對角互補或兩個三角形同底並在底的同向且有相等「頂角」時
常常添加輔助圓
做數學怎麼懂得做輔助線方法相關 文章 :
★ 初中數學幾何做輔助線方法技巧
★ 初中數學幾何做輔助線技巧
★ 初中數學常用輔助線添加技巧
★ 做數學題不知道怎麼下手沒有思路
★ 簡單高效的初中數學學習方法
★ 輔導孩子6年數學後,有5個經驗我一定要告訴你!
★ 初一學生學習數學的方法技巧有哪些
★ 初中數學的方法與技巧
★ 怎樣才能學好初中數學
★ 如何提高初中數學作業質量