『壹』 小學數學都有什麼內容
問題一:小學數學有哪些內容。 有如下內容:
(一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少――單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量――單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫――高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 C 梯形 C 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題――比如求平均數、一個量比另一個量提高或降低百分之幾等等。
問題二:小學數學都有什麼內容 (一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少――單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量――單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫――高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 C 梯形 C 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題――比如求平均數、一個量比另一個量提高或降低百分之幾等等
問題三:小學數學分為幾大塊每塊都包括什麼內容 小學數學包括三大塊,第一,數與代數,第二,幾何與圖形,第三,統計與概率。
數與代數主要包括,數的讀寫方法(整數,小數,分數),數的改寫(化成用萬、億作單位的數,求近似數等),數的大小比較(整數,小數,分數的大小比較),四則運算(計演算法則,運算順序,運算定律等),量的計量(質量,長度,面積,時間,體積(容積)、人民幣等,以及單位間的換算)。
幾何與圖形包括,認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等等。
統計與概率主要包括:統計表,統計圖(條形,扇形,折線等等)平均數眾數,概率等等。
問題四:小學數學除了數,還有哪些內容? 課堂教學是一門藝術,不僅要有精確的內容,精湛的形式,精巧的方法,精美的語言,精當的引導和精密的整合,還必須有變化有致、和諧流暢的節奏來調度,方能使它像一首優美的樂章那樣,每一個跳動的音符,都使人感到身心愉悅.數學課堂教學也要有節奏,適度的課堂節奏能自始至終牽動學生的注意力,維系學生的熱情,使課堂教學跌宕起伏,從而輕松愉快地實現教學目的,完成教學任務.一、數學課堂教學節奏的優化好的方法能將教學過程中的各個教學環節酸蠶竄聯起來,使整堂課環環相扣,教師要依據教學內容 、教學任務和目標、學生的基本情況,在教學方法上以多種感官協調活動的綜合智能活動取代單一、乏味的你說我聽的「灌注」,在方法上既要運用比如限時口算,奪紅旗,開火車,搶答案等手段,以及教師短促的語言,嚴肅的表情來營造緊張的課堂氣氛,又要運用講故事,課中操以及幽默的語言,活潑的表情,讓學生時時產生「柳暗花明又一村」的新鮮好奇感,讓他們的思維不斷得到調整,注意力更加集中.在任何講課中 ,學生們都能輕易地記住開頭、結尾和任何一個激-發他們想像的突出例子.經常的「 狀態變換」,這就使學生的大腦始終處於興奮狀態,也就為課堂節奏提供了可能.
問題五:小學數學學習主要有哪些類型? 一是計算(包括加減乘除簡單計算,混合計算,簡便定算)
二是應用題(包括一般應用題、方程應用題等)
其中計算是考察學生的基礎知識的,而應用題時考察靈活應用的
問題六:小學數學能力包括哪些內容 知道一節好的數學課,要做到兩個關註:一是:關注學生,從學生的實際出發,
關注學生的情感需求和認知需求,關注學生的已有的知識基礎和生活經驗,是
一節成功課堂的必要基礎。二是:關注數學:抓住數學的本質進行教學,注重數
學思維方法的滲透,讓學生在觀察、操作、推理、驗證的過程中有機會經歷數學
化的學習過程,使學生真正體驗到數學,樂學、愛學數學。
一節好的數學課,不要有「做秀」情結,提倡「簡潔而深刻、清新而厚重」的教學
風格,展現思維力度,關注數學方法,體現數學課的靈魂,使數學課上出「數學味」
!而教師的「裝糊塗、留空間」也是一種教學的智慧和方法。
問題七:小學數學新課標的主要內容有哪些 設計思路(一)關於學段為了體現義務教育階段數學課程的整體性,小學數學新課標內容《全日制義務教育數學課程標准(實驗稿)》(以下簡稱《標准》)通盤考慮了九年的課程內容;同時,根據
小學數學新課程標准(全部)__平靜站點
小學數學新課程標准(全部) 第一部分 前言 數學是人們對客觀世界定性把握和定量 課程內容的學習,強調學生的數學活動,發展學生的數感、符號感、空間觀念、統計
小學數學新課標相關內容
2007年7月13日 小學數學新課標內容標准 本部分分別闡述各個學段中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容標准。小學數學新課標內容
小學數學新課標內容標准(轉載) - 紀月霞臨江市四道溝鎮小學- 省
2008年4月8日 小學數學新課標內容標准本部分分別闡述各個學段中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容標准。 「數與代數」的內容主要
小學數學新課標內容
問題八:小學數學有哪些內容。 有如下內容:
(一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少――單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量――單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫――高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 C 梯形 C 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題――比如求平均數、一個量比另一個量提高或降低百分之幾等等。
問題九:小學數學都有什麼內容 (一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少――單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量――單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫――高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 C 梯形 C 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題――比如求平均數、一個量比另一個量提高或降低百分之幾等等
問題十:小學數學新課標的主要內容有哪些 設計思路(一)關於學段為了體現義務教育階段數學課程的整體性,小學數學新課標內容《全日制義務教育數學課程標准(實驗稿)》(以下簡稱《標准》)通盤考慮了九年的課程內容;同時,根據
小學數學新課程標准(全部)__平靜站點
小學數學新課程標准(全部) 第一部分 前言 數學是人們對客觀世界定性把握和定量 課程內容的學習,強調學生的數學活動,發展學生的數感、符號感、空間觀念、統計
小學數學新課標相關內容
2007年7月13日 小學數學新課標內容標准 本部分分別闡述各個學段中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容標准。小學數學新課標內容
小學數學新課標內容標准(轉載) - 紀月霞臨江市四道溝鎮小學- 省
2008年4月8日 小學數學新課標內容標准本部分分別闡述各個學段中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容標准。 「數與代數」的內容主要
小學數學新課標內容
『貳』 小學數學知識點有哪些
小學數學知識點:
1、算式:加,減,乘,除。
2、對三角形的認識、三角形的面積計算公式、三角形的周長計算公式。
3、長方形的周長計算公式、長方形的面積計算公式。
4、對圓的認識、圓的面積計算公式、圓的周長計算公式、圓柱的表面積計算公式。
5、小數、分數,分數又包括帶分數、假分數、真分數。
6、對百分數的認識、百分數的運用。
7、比的認識、化簡比、求比值。
8、正方形的面積計算公式、正方形的周長計算公式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
『叄』 小學數學四大領域主要內容
數與代數:的認識,數的表示,數的大小,數的運算,數量的估計;圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;統計與概率:收集、整理和描述數據,處理數據;實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
小學數學新課標的基本理念
1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。
2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。內容的呈現應採用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。
『肆』 小學數學知識點有哪些
小學數學知識點如下:
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推。
2、個位不夠減從十位退1,在個位加10再減。
3、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數。
4、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小。
5、圓的面積=半徑×半徑×π 公式:S=πr2。
『伍』 小學數學知識有什麼
你好,這個問題我來回答:
以2019年小學數學知識大綱來看,主要的知識點和公式有以下這些:
小學數學公式大全
第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個, 叫做最大公約數。)
35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數)
39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。
41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45,合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46,利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47,利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48,自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49,循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3。 141414
50,不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51,無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52,什麼叫代數 代數就是用字母代替數。
53,什麼叫代數式 用字母表示的式子叫做代數式。如:3x =ab+c
小學數學公式大全,第二部分:計算公式。
數量關系式:
1, 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2, 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3, 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4, 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5, 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6, 加數+加數=和 和-一個加數=另一個加數
7, 被減數-減數=差 被減數-差=減數 差+減數=被減數
8, 因數×因數=積 積÷一個因數=另一個因數
9, 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)
面積,體積換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公頃=10000平方米 1畝=666。666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量換算:
1噸=1000 千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時間單位換算:
1世紀=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分1分=60秒 1時=3600秒
小學數學公式大全,第三部分:幾何體。
1、正方形
正方形的周長=邊長×4 公式:C=4a
正方形的面積=邊長×邊長 公式:S=a×a
正方體的體積=邊長×邊長×邊長 公式:V=a×a×a
2、長方形
長方形的周長=(長+寬)×2 公式:C=(a+b)×2
長方形的面積=長×寬 公式:S=a×b
長方體的體積=長×寬×高 公式:V=a×b×h
3、三角形三角形的面積=底×高÷2。 公式:S= a×h÷2
4、平行四邊形平行四邊形的面積=底×高 公式:S= a×h
5、梯形梯形的面積=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6、圓直徑=半徑×2 公式:d=2r半徑=直徑÷2 公式:r= d÷2
圓的周長=圓周率×直徑 公式:c=πd =2πr圓的面積=半徑×半徑×π 公式:S=πrr
7、圓柱
圓柱的側面積=底面的周長×高。 公式:S=ch=πdh=2πrh
圓柱的表面積=底面的周長×高+兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的總體積=底面積×高。 公式:V=Sh
8、圓錐
圓錐的總體積=底面積×高×1/3 公式:V=1/3Sh
三角形內角和=180度。
平行線:同一平面內不相交的兩條直線叫做平行線
垂直:兩條直線相交成直角,像這樣的兩條直線,
我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
希望能夠幫助到您。
『陸』 小學三年級數學學什麼
小學三年級的學習內容有以下幾部分組成;
1、測量單位的學習,比如毫米、分米、千米等度量單位的換算等;
2、一萬以內加減法的運算;
3、四邊形周長的計算,比如正方形、長方形、平行四邊形;
4、有餘數存在時,除法的運算;
5、時間單位的初步學習,比如時、分、秒以及之間的換算關系;
『柒』 小學數學能力包括哪些內容
小學數學概念包括:數的概念、數的運算的概念、幾何形體的概念、數的整除方面的概念.比和比例的概念、量的計量概念等.
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用.
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等.這部分內容只是用於簡便運算.
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算.
『捌』 小學數學都學些什麼
(一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少——單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量——單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫——高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 – 梯形 – 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題——比如求平均數、一個量比另一個量提高或降低百分之幾等等
『玖』 小學數學知識點有哪些
1、除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
4、分數的意義:把單位「1」平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「1」平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
5、百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
『拾』 小學數學學習的內容有哪些
1、Chinese語文:語文是語言以及文學、文化的簡稱。
2、English英語:英語(English)作為世界通用語言,是聯合國的工作語言之一,也是事實上的國際交流語言。
3、Japanese日語:日語復雜的書寫系統是其一大特徵,其書寫系統包括了日語漢字(大多數的漢字又有音讀及訓讀兩種念法)、平假名、片假名三種文字系統
4、mathematics數學:數學(mathematics),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
5、science自然:自然是指大自然中各個事物的總體。
20、philosophy哲學
21、engineering工程學
22、mechanical engineering機械工程學
23、electronic engineering電子工程學
24、medicine醫學
25、social science社會科學
26、agriculture農學
27、astronomy天文學
28、economics經濟學
29、politics政治學
30、comercial science商學
31、biochemistry生物化學
32、anthropology人類學
33、languistics語言學
34、accounting會計學
35、law, jurisprdence法學