導航:首頁 > 數字科學 > 數學題有哪些種類

數學題有哪些種類

發布時間:2023-02-26 12:58:18

㈠ 四年級數學題型有哪些

四年級數學題型有:

一、和差問題。已知兩數的和與差,求這兩個數。

【口訣】:

和加上差,越加越大;

除以2,便是大的;

和減去差,越減越小;

除以2,便是小的。

二、雞兔同籠問題。

【口訣】:

假設全是雞,假設全是兔。

多了幾只腳,少了幾只足?

除以腳的差,便是雞兔數。

三、濃度問題。

1、加水稀釋。

【口訣】:

加水先求糖,糖完求糖水。

糖水減糖水,便是加糖量。

2、加糖濃化。

【口訣】:

加糖先求水,水完求糖水。

糖水減糖水,求出便解題。

四、路程問題。

1、相遇問題

【口訣】:

相遇那一刻,路程全走過。

除以速度和,就把時間得。

2、追及問題

【口訣】:

慢鳥要先飛,快的隨後追。

先走的路程,除以速度差,

時間就求對。

五、工程問題。

【口訣】:

工程總量設為1,

1除以時間就是工作效率。

單獨做時工作效率是自己的,

一齊做時工作效率是眾人的效率和。

1減去已經做的便是沒有做的,

沒有做的除以工作效率就是結果。

六、盈虧問題。

【口訣】:

全盈全虧,大的減去小的;

一盈一虧,盈虧加在一起。

除以分配的差,

結果就是分配的東西或者是人。

七、牛吃草問題。

【口訣】:

每牛每天的吃草量假設是份數1,

A頭B天的吃草量算出是幾?

M頭N天的吃草量又是幾?

大的減去小的,除以二者對應的天數的差值,

結果就是草的生長速率。

原有的草量依此反推。

公式就是A頭B天的吃草量減去B天乘以草的生長速率。

將未知吃草量的牛分為兩個部分:

一小部分先吃新草,個數就是草的比率;

有的草量除以剩餘的牛數就將需要的天數求知。

八、年齡問題。

【口訣】:

歲差不會變,同時相加減。

歲數一改變,倍數也改變。

抓住這三點,一切都簡單。

九、和比問題。已知整體求部分。

【口訣】:

家要眾人合,分家有原則。

分母比數和,分子自己的。

和乘以比例,就是該得的。

十、差比問題。

【口訣】:

我的比你多,倍數是因果。

分子實際差,分母倍數差。

商是一倍的,

乘以各自的倍數,

兩數便可求得。

小學四年級數學學習方法:

1、思考:思考是 數學學習方法 的核心。 在學這門課中,思考有重大意義。 解數學題時,首先要觀察、分析、思考。 思考往往能發現題目的特點,找出解題的突破口、簡單的解題方法。

2、動手試一試:動手有助於消化學習過的知識,做到融會貫通。 課下,我常常把老師講過的公式進行推導,推導時不要看書,要默記。 這樣就能使自己對公式掌握滾瓜爛熟。

3、培養創造精神:所謂創造,就是想出新辦法,做出新成績,建立新理論。 創造,就要不局限於老師、課本講的方法。

㈡ 數學題目題型有哪些

高考數學必考七個題型:
第一,函數與導數

主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

第二,平面向量與三角函數、三角變換及其應用

這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

第三,數列及其應用

這部分是高考的重點而且是難點,主要出一些綜合題。

第四,不等式

主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

第五,概率和統計

這部分和我們的生活聯系比較大,屬應用題。

第六,空間位置關系的定性與定量分析

主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

第七,解析幾何

高考的難點,運算量大,一般含參數。

高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。

針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、並形成記憶,形成技能。以不變應萬變。

㈢ 高考數學大題6大題型是什麼

高考數學大題6大題型是:

1、三角函數、向量、解三角形

(1)三角函數畫圖、性質、三角恆等變換、和與差公式。

(2)向量的工具性(平面向量背景)。

(3)正弦定理、餘弦定理、解三角形背景。

(4)綜合題、三角題一般用平面向量進行「包裝」,講究知識的交匯性,或將三角函數與解三角形有機融合。

重視三角恆等變換下的性質探究,重視考查圖形圖像的變換。

2、概率與統計

(1)古典概型。

(2)莖葉圖。

(3)直方圖。

(4)回歸方程。

(5)(理)概率分布、期望、方差、排列組合。概率題貼近生活、貼近實際,考查等可能 性事件、互斥事件、獨立事件的概率計算公 式,難度不算很大。

3、立體幾何

(1)平行。

(2)垂直。

(3)角。

(4)利用三視圖計算面積與體積。

(5)既可以用傳統的幾何法,也可以建立空間直角坐標系,利用法向量等。

4、數列

(1)等差數列、等比數列、遞推數列是考查的熱點,數列通項、數列前n項的和以及二者之間的關系。

(2)文理科的區別較大,理科多出現在壓軸題位置的卷型,理科注重數學歸納法。

(3)錯位相減法、裂項求和法。

(4)應用題。

5、圓錐曲線(橢圓)與圓

(1)橢圓為主線,強調圓錐曲線與直線的位置關系,突出韋達定理或差值法。

(2)圓的方程,圓與直線的位置關系。

(3)注重橢圓與圓、橢圓與拋物線等的組合題。

6、函數、導數與不等式

(1)函數是該題型的主體:三次函數,指數函數,對數函數及其復合函數。

(2)函數是考查的核心內容,與導數結合,基本題型是判斷函數的單調性,求函數的最 值(極值),求曲線的切線方程,對參數取值范 圍、根的分布的探求,對參數的分 類討論以及代數推理等等。

(3)利用基本不等式、對勾函數性質。

㈣ 小學數學應用題包括哪些種類

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

㈤ 生活中的數學問題有哪些

生活中的數學問題有如下:

1、烙餅問題:媽媽烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最少用幾分鍾?

2、襪子問題,抽屜里有5雙不同顏色的襪子,沒開燈,要拿出一雙同色的襪子,從中最多需要摸出多少只?

3、桌子問題,一張方桌,砍掉一個角還有幾個角?

4、切豆腐問題:一塊豆腐切三刀,最多能切幾塊?

5、切西瓜問題:三刀切7瓣,吃完剩下8塊皮,怎麼切?

6、竹竿問題:5米長的竹竿能不能通過一米高的門?

7、紙盒問題:邊長一米的方盒子能不能放下1.5米的木棍?

8、時鍾問題:12小時,時鍾和分針重復多少次?

㈥ 小學數學應用題有哪些類型

分數:甲乙兩人共有錢150元。甲是乙的1/4。甲乙兩人各有多少元。
小數:小明每分鍾走0.06千米。他家距學校有1500千米。它上學時可以騎車,騎車每分鍾走120米。問如果用騎車上學,筆走路快幾分鍾?
百分數:機械廠,今年生產機械1500台,筆計劃增產了120%,原計劃生產多少台?
整數:甲乙兩地相距300千米,甲乙兩人同時相向出發。甲的速度是乙的4倍,問兩人相遇時,乙走多少千米?
一定要選我呀,字怪難打得。

㈦ 數學中有哪五種類型的題

數學商業上計算的需要、了解數與數之間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習.
一般分為以下幾種
代數(一般學數學不會太難,除了一些競賽的,但如費馬大定理一些國際難題,可能會困擾人很長時間)
幾何(初中平面幾何,高中立體幾何都不會太難,但要熟練運用公理,定理,要有一定空間想像力)
實際問題(如一次函數,解方程......多結合生活實際)
函數(中考,高考難點,重點,注意數形結合)
基礎(為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,Pioncare也把集合論比作有趣的「病理情形」,Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」。對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」[1-2]集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性。[1])

㈧ 中考數學必考題型有哪些

1、圖形位置關系

圖形位置關系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關系。在中考中會包含在函數,坐標系以及幾何問題當中,但主要還是通過圓與其他圖形的關系來考察,這其中最重要的就是圓與三角形的各種問題。

㈨ 小學數學的應用題類型

小學數學的應用題類型匯總

應用題是指將所學知識應用到實際生活實踐的題目,在數學上,應用題分兩大類:一個是數學應用。另一個是實際應用。我整理的小學數學的應用題類型,供參考!

一、一般應用題

一般應用題沒有固定的結構,也沒有解題規律可循,完全要依賴分析題目的數量關系找出解題的線索。

要點:從條件入手?從問題入?

從條件入手分析時,要隨時注意題目的問題

從問題入手分析時,要隨時注意題目的已知條件。

例題如下:

某五金廠一車間要生產1100個零件,已經生產了5天,平均每天生產130個。剩下的如果平均每天生產150個,還需幾天完成?

思路分析:

已知「已經生產了5天,平均每天生產130個」,就可以求出已經生產的個數。

已知「要生產1100個機器零件」和已經生產的個數,已知「剩下的平均每天生產150個」,就可以求出還需幾天完成。

二、典型應用題

用兩步或兩步以上運算解答的應用題中,有的題目由於具有特殊的結構,因而可以用特定的步驟和方法來解答,這樣的應用題通常稱為典型應用題。

(一)求平均數應用題

解答求平均數問題的規律是:

總數量÷對應總份數=平均數

註:在這類應用題中,我們要抓住的是對應,可根據總數量來劃分成不同的子數量,再一一地根據子數量找出各自的份數,最終得出對應關系。

例題一如下:

一台碾米機,上午4小時碾米1360千克,下午3小時碾米1096千克,這天平均每小時碾米約多少千克?

思路分析:

要求這天平均每小時碾米約多少千克,需解決以下三個問題:

1、這一天總共碾了多少米?(一天包括上午、下午)。

2、這一天總共工作了多少小時?(上午的4小時,下午的3小時)。

3、這一天的總數量是多少?這一天的總份數是多少?(從而找出了對應關系,問題也就得到了解決。)

(二)歸一問題

歸一問題的題目結構是:

題目的前部分是已知條件,是一組相關聯的量;

題目的後半部分是問題,也是一組相關聯的量,其中有一個量是未知的。

解題規律是,先求出單一的量,然後再根據問題,或求單一量的幾倍是多少,或求有幾個單一量。

例題如下:

6台拖拉機4小時耕地300畝,照這樣計數,8台拖拉機7小時可耕地多少畝?

思路分析:

先求出單一量,即1台拖拉機1小時耕地的畝數,再求8台拖拉機7小時耕地的畝數。

(三)相遇問題

指兩運動物體從兩地以不同的速度作相向運動。

相遇問題的基本關系是:

1、相遇時間=相隔距離(兩個物體運動時)÷速度和。

例題如下:兩地相距500米,小紅和小明同時從兩地相向而行,小紅每分鍾行60米,小明每分鍾行65米,幾分鍾相遇?

2、相隔距離(兩物體運動時)=速度之和×相遇時間

例題如下:一列客車和一列貨車分別從甲乙兩地同時相對開出,10小時後在途中相遇。已知貨車平均每小時行45千米,客車每小時的速度比貨車快20﹪,求甲乙相距多少千米?

3、甲速=相隔距離(兩個物體運動時)÷相遇時間-乙速

例題如下:一列貨車和一列客車同時從相距648千米的兩地相對開出,4.5小時相遇。客車每小時行80千米,貨車每小時行多少千米?

相遇問題可以有不少變化。

如兩個物體從兩地相向而行,但不同時出發;

或者其中一個物體中途停頓了一下;

或兩個運動的物體相遇後又各自繼續走了一段距離等,都要結合具體情況進行分析。

另:相遇問題可以引申為工程問題:即工效和×合做時間=工作總量

三、分數和百分數應用題

分數和百分數的基本應用題有三種,下面分別談一談每種應用題的特徵和解題的規律。

(一)求一個數是另一個數的百分之幾

這類問題的結構特徵是,已知兩個數量,所求問題是這兩個量間的百分率。

求一個數是另一個數的百分之幾與求一個數是另一個數的幾倍或幾分之幾的實質是一樣的,只不過計算結果用百分數表示罷了,所以求一個數是另一數的百分之幾時,要用除法計算。

解題的一般規律是:設a、b是兩個數,當求a是b的百分之幾時,列式是a÷b。解答這類應用題時,關鍵是理解問題的含意。

例題如下:

養豬專業戶李阿姨去年養豬350頭,今年比去年多養豬60頭,今年比去年多養豬百分之幾?

思路分析:

問題的含義是:今年比去年多養豬的頭數是去年養豬頭數的百分之幾。所以應用今年比去年多養豬的頭數去÷去年養豬的頭數,然後把所得的結果轉化成百分數。

(二)求一個數的幾分之幾或百分之幾

求一個數的幾分之幾或百分之幾是多少,都用乘法計算。

解答這類問題時,要從反映兩個數的倍數關系的那個已知條件入手分析,先確定單位「1」,然後確定求單位「1」的幾分之幾或百分之幾。

(三)已知一個數的幾分之幾或百分之幾是多少,求這個數

這類應用題可以用方程來解,也可以用算術法來解。

用算術方法解時,要用除法計算。

解答這類應用題時,也要反映兩個數的倍數關系的已知條件入手分析:

先確定單位「1」,再確定單位「1」的幾分之幾或百分之幾是多少。

一些稍難的應用題,可以畫圖幫助分析數量關系。

(四)工程問題

工程問題是研究工作效率、工作時間和工作總量的問題。

這類題目的特點是:

工作總量沒有給出實際數量,把它看做「1」,工作效率用來表示,所求問題大多是合作時間。

例題如下:

一件工程,甲工程隊修建需要8天,乙工程隊修建需要12天,兩隊合修4天後,剩下的任務,有乙工程隊單獨修,還需幾天?

思路分析:

把一件工程的工作量看作「1」,則甲的工作效率是1/8,乙的工作效率是1/12。

已知兩隊合修了4天,就可求出合修的工作量,進而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是還需要幾天完成。

四、比和比例應用題

比和比例應用題是小學數學應用題的重要組成部分。在小學中,比的應用題包括:比例尺應用題和按比例分配應用題,正、反比例應用題。

(一)比例尺應用題

這種應用題是研究圖上距離、實際距離和比例尺三者之間的關系的。

解答這類應用題時,最主要的是要清楚比例尺的意義,即:

圖上距離÷實際距離=比例尺

根據這個關系式,已知三者之間的任意兩個量,就可以求出第三個未知的.量。

例題如下:

在比例尺是1:3000000的地圖上,量得A城到B城的距離是8厘米,A城到B城的實際距離是多少千米?

思路分析:

把比例尺寫成分數的形式,把實際距離設為x,代入比例尺的關系式就可解答了。所設未知數的計量單位名稱要與已知的計量單位名稱相同。

(二)按比例分配應用題

這類應用題的特點是:把一個數量按照一定的比分成兩部分或幾部分,求各部分的數量是多少。

這是學生在小學階段唯一接觸到的不平均分問題。

這類應用題的解題規律是:

先求出各部分的份數和,在確定各部分量占總數量的幾分之幾,最後根據求一個數的幾分之幾是多少,用乘法計算,求出各部分的數量。

按比例分配也可以用歸一法來解。

例題如下:

一種農葯溶液是用葯粉加水配製而成的,葯粉和水的重量比是1:100。2500千克水需要葯粉多少千克?5.5千克葯粉需加水多少千克?

思路分析:

已知葯和水的份數,就可以知道葯和水的總份數之和,也就可以知道葯和水各自占總份數的幾分之幾,知道了分率,相應地也就可以求出各自相對量。

(三)正、反比例應用題

解答這類應用題,關鍵是判斷題目中的兩種相關聯的量是成正比里的量,還是成反比例的量。

如果用字母x、y表示兩種相關聯的量,用K表示比值(一定),兩種相向關聯的量成正比例時,用下面的式子來表示:

kx=y(一定)。

如果兩種相關聯的量成反比例時,可用下面的式子來表示:

×y=K(一定)。

例題如下:

六一玩具廠要生產2080套兒童玩具。前6天生產了960套,照這樣計算,完成全部任務共需要多少天?

思路分析:

因為工作總量÷工作時間=工作效率,已知工作效率一定,所以工作總量與工作時間成正比例。

;
閱讀全文

與數學題有哪些種類相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:832
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017