導航:首頁 > 數字科學 > 數學建模中建模手應該掌握什麼

數學建模中建模手應該掌握什麼

發布時間:2023-02-27 05:59:31

⑴ 參加數學建模需要學習哪些方面的知識

參加數學建模需要學習以下方面的知識。



首先,需要弄清楚建模的過程。建議找本數模歷年的論文看看,理清思路,步驟等。


其次,看點數學的知識。重點是優化、統計。幾乎每年都會有題目是關於優化的。


第三、看一下演算法相關的。當然與上面的第二條有所重復了。並用MATLAB maple等實現以下。


第四、學習一下編程的知識,比如C++,MATLAB,lingo等。


第五、找到兩個跟你互補的人,組成團隊,有人側重編程,有人側重論文,有人側重數學等等。


數學建模,就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。


資料來源:網路—數學建模

⑵ 參加數學建模大賽需要大概要掌握哪些方面的知識

數學建模競賽的內容:

競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過普通高校的數學課程。

題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。


數學建模大賽步驟:

建模是一個非常復雜和創造性的工作。現實世界中的事物是如此的多樣化和繁雜,以至於不可能指定如何使用一些規則和規則來構建各種模型。下面是對建模的一般步驟和原則的概括總結:

1、模型准備:首先要了解問題的實際背景,明確課題的要求,收集各種必要的信息。

2、模型假設:為了使用數學方法,通常需要對問題做出合理的假設,突出問題的主要特徵,忽略問題的次要方面。

3、模型組成:根據所做的假設和事物之間的關系,構造出各量之間的關系,構成問題。

4、模型求解:利用已知的數學方法來求解前一步得到的數學問題,往往需要進一步的簡化或假設。對於數學問題,要盡可能小心地使用簡單的數學工具。

⑶ 為學習數學建模打基礎,需要學習哪些數學作為基礎

1.基礎:高等數學、線性代數、概率論與數理統計x0dx0a2.專業方面:運籌學(主要針對最優化問題),其他數學建模用書(主要看方法,例如層次分析法等)x0dx0a3.軟體方面:lingo、matlab、origin等x0dx0a5.美賽還要看翻譯(所以專業英語要好好學)、排版比較重要x0dx0a總結:數學建模不是純粹的數學知識,有時候數學建模用的數學知識很少,所以要了解建模過程,掌握建模方法(方法非常重要)。平時多看一些特等獎的建模論文,你會有意想不到的收獲

⑷ 數學建模需要哪些數學知識

數學分析,高等代數,概率統計。數學建模最主要的問題在知識點上無非是這幾塊:1、多元變數求最值問題,最終能夠將其轉化為拉格朗日乘子法;2、高維線性規劃,線性回歸問題,用線性代數的矩陣乘法來解決;3、有可能需要用到隨機過程的相關知識,以及應用大數定理,以及蒙特卡洛演算法,用概率統計為工具進行解決。

⑸ 初學者,數學建模需要准備些什麼東西

數學建模應當掌握的十類演算法
‍‍ 1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)
數學建模資料
競賽參考書
l、中國大學生數學建模競賽,李大潛主編,高等教育出版社(1998). 2、大學生數學建模競賽輔導教材,(一)(二)(三),葉其孝主編,湖南教育 出版社(1993,1997,1998). 3、數學建模教育與國際數學建模競賽 《工科數學》專輯,葉其孝主編, 《工科數學》雜志社,1994).
國內教材、叢書
1、數學模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年國家教委舉辦的第二屆全國優秀教材評選中獲"全國優秀教材獎"). 2、數學模型與計算機模擬,江裕釗、辛培情編,電子科技大學出版社,(1989). 3、數學模型選談(走向數學從書),華羅庚,王元著,王克譯,湖南教育出版社;(1991). 4、數學建模--方法與範例,壽紀麟等編,西安交通大學出版社(1993). 5、數學模型,濮定國、 田蔚文主編,東南大學出版社(1994). 6..數學模型,朱思銘、李尚廉編,中山大學出版社,(1995) 7、數學模型,陳義華編著,重慶大學出版社,(1995) 8、數學模型建模分析,蔡常豐編著,科學出版社,(1995). 9、數學建模競賽教程,李尚志主編,江蘇教育出版社,(1996). 10、數學建模入門,徐全智、楊晉浩編,成都電子科大出版社,(1996). 11、數學建模,沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學出版社,(1996). 12、數學模型基礎,王樹禾編著,中國科學技術大學出版社,(1996). 13、數學模型方法,齊歡編著,華中理工大學出版社,(1996). 14、數學建模與實驗,南京地區工科院校數學建模與工業數學討論班編,河海大學 出版社,(1996). 15、數學模型與數學建模,劉來福、曾文藝編,北京師范大學出版杜(1997). 16. 數學建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師范大學出版社. 17、數學模型,譚永基,俞文吡編,復旦大學出版社,(1997). 18、數學模型實用教程,費培之、程中瑗層主編,四川大學出版社,(1998). 19、數學建模優秀案例選編(工科數學基地建設叢書),汪國強主編,華南理工大學出版社,(1998). 20、經濟數學模型(第二版)(工科數學基地建設叢書),洪毅、賀德化、昌志華 編著,華南理工大學出版社,(1999). 21、數學模型講義,雷功炎編,北京大學出版社(1999). 22、數學建模精品案例,朱道元編著,東南大學出版社,(1999), 23、問題解決的數學模型方法,劉來福,曾文藝編著、北京師范大學出版社,(1999). 24、數學建模的理論與實踐,吳翔,吳孟達,成禮智編著,國防科技大學出版社, (1999). 25、數學建模案例分析,白其嶺主編,海洋出版社,(2000年,北京). 26、數學實驗(高等院校選用教材系列),謝雲蓀、張志讓主編,科學出版社,(2000). 27、數學實驗,傅鵬、龔肋、劉瓊蓀,何中市編,科學出版社,(2000). 28、數學建模與數學實驗,趙靜、但琦編,高等教育出版社,(2000).
國外參考書(中譯本)
1、數學模型引論, E.A。Bender著,朱堯辰、徐偉宣譯,科學普及出版社(1982). 2、數學模型,[門]近藤次郎著,官榮章等譯,機械工業出版社,(1985). 3、微分方程模型,(應用數學模型叢書第1卷),[美]W.F.Lucas主編,朱煜民等 譯,國防科技大學出版社,(1988). 4、政治及有關模型,(應用數學模型叢書第2卷),[美W.F.Lucas主編,王國秋 等譯,國防科技大學出版社,(1996). 5、離散與系統模型,(應用數學模型叢書第3卷),[美w.F.Lucas主編,成禮智 等譯,國防科技大學出版社,(1996). 6、生命科學模型,(應用數學模型叢書第4卷),[美1W.F.Lucas主編,翟曉燕等 譯,國防科技大學出版社,(1996). 7、模型數學--連續動力系統和離散動力系統,[英1H.B.Grif6ths和A.01dknow 著,蕭禮、張志軍編譯,科學出版社,(1996). 8、數學建模--來自英國四個行業中的案例研究,(應用數學譯叢第4號), 英]D.Burglles等著,葉其孝、吳慶寶譯,世界圖書出版公司,(1997)
專業性參考書
(這方面書籍很多,僅列幾本供參考) : 1、水環境數學模型,[德]W.KinZE1bach著,楊汝均、劉兆昌等編纂,中國建築工 業出版社,(1987). 2、科技工程中的數學模型,堪安琦編著,鐵道出版社(1988) 3、生物醫學數學模型,青義學編著,湖南科學技術出版杜(1990). 4、農作物害蟲管理數學模型與應用,蒲蟄龍主編,廣東科技出版社(1990). 5、系統科學中數學模型,歐陽亮編著, E山東大學出版社,(1995). 6、種群生態學的數學建模與研究,馬知恩著,安徽教育出版社,(1996) 7、建模、變換、優化--結構綜合方法新進展,隋允康著,大連理工大學出版社, (1986) 8、遺傳模型分析方法,朱軍著,中國農業出版社(1997). (中山大學數學系王壽松編輯,2001年4月)
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。

1、努力學習數學知識,完善自己的知識體系,尤其是與數學相關的知識體系,比如高等數學、工程數學和應用數學的相關知識;
2、擴充自己的知識面,你可以看到很多賽題都是很現實的社會熱點問題,相關的背景知識是非常必要的;
3、多看一些案例分析的教程,在學習案例分析時的注意點是:如何考慮現實問題中的各個因素,綜合運用所學知識,建立適當的模型;如何進行模型的優化;如何求解模型;如何解釋模型的解。
還要逐步去理解數學建模中最難的三個問題,1、如何用學到的數學思想來表述所面對的問題,所謂的建模。2、應用學到的數學知識解剛剛建立的數學模型,並進行優化。3、將剛剛得到的數學上的解解釋為現實問題中的現象或者是方法。這三個過程體現了一個「現實——>數學——>現實」的一個過程。這其實就是最難的地方。這需要你首先了解面臨的實際問題,然後從現實中轉入數學,再從數學中跳出來回到現實。
4、說到matlab,我建議你借一本matlab手冊做參考書就行了!畢竟matlab只是實現你數學模型的基礎,這不是說matlab不重要,其實matlab也很重要!
祝你快樂!

閱讀全文

與數學建模中建模手應該掌握什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:736
乙酸乙酯化學式怎麼算 瀏覽:1400
沈陽初中的數學是什麼版本的 瀏覽:1346
華為手機家人共享如何查看地理位置 瀏覽:1038
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:880
數學c什麼意思是什麼意思是什麼 瀏覽:1404
中考初中地理如何補 瀏覽:1294
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:697
數學奧數卡怎麼辦 瀏覽:1383
如何回答地理是什麼 瀏覽:1018
win7如何刪除電腦文件瀏覽歷史 瀏覽:1050
大學物理實驗干什麼用的到 瀏覽:1480
二年級上冊數學框框怎麼填 瀏覽:1695
西安瑞禧生物科技有限公司怎麼樣 瀏覽:958
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1333
學而思初中英語和語文怎麼樣 瀏覽:1646
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053