1. 關於數學專業大學生科研有哪些課題
1、自然數間加、減、乘、除的某些規律的探索及模型製作
2、楚雄師范學院學生公寓水電限量供應的統計分析
3、人口遷移對我國人口增長的影響
4、托勒密定理的證法及其推廣應用
5、加權禁位排列的研究
6、基於MATLAB的多元非線性回歸模型
7、統計量分布的研究
8、概率統計中文化教育的研究
9、投保額區域性差異的實證分析研究
10、基於Matlab的ARMA(p,q)模型的實現
11、VaR與CVaR的對比研究及實證分析
12、基於AHP方法對構件可復用性度量模型研究
13、具有三種群的食餌—捕食者模型的研究
14、一些智力游戲問題的數學模型及其計算機求解
2. 中小學數學課題題目有哪些
一、學生的數學學習過程研究
1、有效運用學生的學習起點實踐研究
研究內容:什麼是學生的學習起點,在數學教學中學習起點有哪些不同的類型研究,如何尋找與有效運用學生的學習起點研究。
2、關注數學習困難生的實踐研究
研究內容:對數學概念掌握、計算技能或或問題解決能力較弱的學習困難學生的個案研究,如何對學生進行針對性的輔導研究,關於「兩極分化」現象的成因與對策研究。
3、小學數學課前基礎調查的作業設計研究
4、學生數學學習過程的優化研究。
二、教學資源研究
1、數學課堂合理利用教學資源的研究。
研究內容:什麼是數學課堂中可利用的教學資源?教學資源有哪些不同類型?如何利用課堂教學中的錯誤資源?如何合理運用教材,如教材中的主題圖和練習題?如何對有困惑的教材進行創造性的重組並提出新的見解?如何發揮學具的作用?應用題與問題解決的關系研究
2、小學數學教學中有效情境的創設與利用研究
三、教學設計研究
1、小學數學概念教學的一般策略與關鍵因素的研究
研究內容:問題解決教學的一般策略與關鍵因素
2、關於「算」、「用」結合教學策略的研究
研究內容:練習課的設計策略,練習題的開發與運用,關於應用題教學中數量關系教學的研究。
3、關於數學教學中動手實踐有效性的研究
4、關於數學欣賞課的研究
5、關於新課程背景下口算教學的研究
四、教學過程研究
1、學生數學學習心理體驗的研究
研究內容:如何讓學生體驗數學知識的產生、發展與價值?如何選擇有效的教學方式?
2、數學課堂教學有效性研究
研究內容:如何把握課堂教學的節奏?如何提高課堂反饋的實效性?關於課堂上學生獨立作業時間的研究,如何提高數學教師的課堂導入技能?投入和提高數學教師的課堂講解技能?在「解決問題」的教學中如何處理好策略多樣化與基本方法之間的關系,教師課堂提問的有效預設與課堂調控的研究
(有些內容也可以單獨成為研究課題)
五、教學評價研究
1、小學數學命題改革的趨勢與策略研究
2、小學數學「解決問題」評價內容與方式的研究
3、學生視角中的「好」數學教師標準的調查與研究
4、學生視角中的「好」數學課標準的調查與研究
3. 小學數學小課題有哪些
小學數學小課題有以下內容:
1、在小學數學幾何畫板課件的應用研究。
2、在小學數學教學中運用「作業盒子」輔助教學的實驗。
3、互動式教學一體機在小學高段數學空間與圖形教學中的應用研究。
4、基於兒童立場建構「有溫度」的小學數學課堂策略研究。
5、同課異構小學數學綜合實踐活動課例研究。
1、小學數學課堂中的黃金分割。
2、數學通訊網路收費調查統計。
3、數學中的最優化問題。
4、水庫的來水量如何計算。
5、計算器對運算能力影響。
6、數學靈感的培養。
7、如何提高數學課堂效率。
8、二次函數圖象特點應用。
4. 數學教研課題有哪些
數學教研有數學說課稿、教學設計、新課程標准、教材教法、教學隨筆等,這個 http://shuxue.chazidian.com/jiaoyan/各種的課程。
5. 高中數學課題具體有哪些選擇有範例嗎拜託各位大神
數學研究性學習課題 1、銀行存款利息和利稅的調查 2、氣象學中的數學應用問題 3、如何開發解題智慧 4、多面體歐拉定理的發現 5、購房貸款決策問題 6、有關房子粉刷的預算 7、日常生活中的悖論問題 8、關於數學知識在物理上的應用探索 9、投資人壽保險和投資銀行的分析比較 10、黃金數的廣泛應用 11、編程中的優化演算法問題 12、餘弦定理在日常生活中的應用 13、證券投資中的數學 14、環境規劃與數學 15、如何計算一份試卷的難度與區分度 16、數學的發展歷史 17、以「養老金」問題談起 18、中國體育彩票中的數學問題 19、「開放型題」及其思維對策 20、解答應用題的思維方法 21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類 22、高中數學的學習活動——解題後的反思——開發解題智慧 23、中國電腦福利彩票中的數學問題 24、各鎮中學生生活情況 25、城鎮/農村飲食構成及優化設計 26、如何安置軍事偵察衛星 27、給人與人的關系(友情)評分 28、丈量成功大廈 29、尋找人的情緒變化規律 30、如何存款最合算 31、哪家超市最便宜 32、數學中的黃金分割 33、通訊網路收費調查統計 34、數學中的最優化問題 35、水庫的來水量如何計算 36、計算器對運算能力影響 37、數學靈感的培養 38、如何提高數學課堂效率 39、二次函數圖象特點應用 40、統計月降水量 41、如何合理抽稅 42、市區車輛構成 43、計程車車費的合理定價 44、衣服的價格、質地、品牌,左右消費者觀念多少? 45、購房貸款決策問題 研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪) 《 立幾部分 》 問題1 平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。 問題2 用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。 問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。 問題4 異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。 問題5 立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。 問題6 作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。 問題7 等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。 問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。 《解幾部分 》 問題9 對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。 問題10 我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。 問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。 問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。 問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。 問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。 問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。 問題16 解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。 問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。 問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。 問題19 求軌跡問題中,純粹性的簡捷判別。 問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。 問題21 對平移變換的解題功能進行綜述。 問題22 與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。 《函數部分 》 問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。 問題24 整理求定義域的規則及類型(特別是復合函數的類型)。 問題25 求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。 問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。 問題27 利用條件最值的幾何背景進行命題演變,與命題分類。 問題28 回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。 問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。 問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。 問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論? 問題32 對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。 問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。 《三角部分 》 問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。 問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。 問題36 整理三角代換的的類型,及其能解決的哪幾類問題。 問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為 從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。 問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。 問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。 問題40 三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。 《不等式部分 》 問題41 一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。 問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。 問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。 問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。 問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。 問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。 問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。 問題48 探索絕對值不等式和物理模擬法 如果還有什麼相關的課題,請各位同行提出。
求採納