『壹』 i 在數學中是什麼意思
虛數單位。
規定 i²=-1,並且 i 可以與實數在一起按照同樣的運算律進行四則運算,i 叫做虛數單位。虛數單位i的冪具有周期性,虛數單位用I表示,是歐拉在1748年在其《無窮小分析理論》中提出,但沒有受到重視。1801年經高斯系統使用後,才被普遍採用。
來源:
虛數單位「i」首先為瑞士數學家歐拉所創用,到德國數學家高斯提倡才普遍使用。高斯第一個引進術語「復數」並記作a+bi。「虛數」一詞首先由笛卡兒提出。早在1800年就有人用(a,b)點來表示a+bi,他們可能是柯蒂斯、棣莫佛、歐拉以及范德蒙。
把a+bi用向量表示的最早的是挪威人卡斯巴·魏塞爾,並且由他第一個給出復數的向量運演算法則。「i」這個符號來源於法文imkginaire——「虛」的第一個字母,不是來源於英文imaginarynumber(或imaginaryquautity)。復數集C來源於英文complexnumber(復數)一詞的第一個字母。
(1)數學i表示什麼意思是什麼意思擴展閱讀:
i相關延伸:i在物理學的定義:
電流的強弱用電流強度來描述,電流強度是單位時間內通過導體某一橫截面的電量,簡稱電流,用I表示。
電流強度是標量,習慣上常將正電荷的運動方向規定為電流的方向。在導體中電流的方向總是沿著電場方向從高電勢處指向低電勢處。在國際單位制中,電流強度的單位是安培(A),它是SI制中的七個基本單位之一。
一些常見的電流:電子手錶1.5μA至2μA,白熾燈泡200mA,手機100mA,空調5A至10A,高壓電200A,閃電20000A至200000A。
『貳』 高中數學常用的數學符號中i 指的是什麼
i指的是虛數。在數學里,將偶指數冪是負數的數定義為純虛數。所有的虛數都是復數。定義為i²=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。
在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i = - 1。虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
(2)數學i表示什麼意思是什麼意思擴展閱讀:
i的性質編輯
1、i 的高次方會不斷作以下的循環:
i^1 = i,
i^2= - 1,
i^3 = - i,
i^4 = 1,
i^5 = i,
i^6 = - 1.
...
2、i^n具有周期性,且最小正周期是4.
∴ i^4n=1,
i^4n+1=i,
i^4n+2=-1,
i^4n+3=-i.
『叄』 i 在數學中是什麼意思
i
在數學中是復數中的意思是:表示虛數的單位。i的平方等於-1。
『肆』 數學中i代表什麼
i是虛數單位,i的平方等於-1
『伍』 數學i是什麼意思
虛數單位。規定i=-1,並且i可以與實數在一起按照同樣的運算律進行四則運算,i叫做虛數單位。虛數單位i的冪具有周期性,虛數單位用I表示。在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i=-1。虛數這個名詞是17世紀著名數學家笛卡爾創立。
虛數單位。
規定i²=-1,並且i可以與實數在一起按照同樣的運算律進行四則運算,i叫做虛數單位。虛數單位i的冪具有周期性,虛數單位用I表示。
虛數單位i的冪具有周期性,虛數單位用I表示。在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i²=-1。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
『陸』 i 在數學中是什麼意思
在數學里,將偶指數冪是負數的數定義為純虛數。定義為i²=-1。所有的虛數都是復數。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對於z=a+bi,也可以表示為e的iA次方的形式,其中e是常數,i為虛數單位,A為虛數的幅角,即可表示為z=cosA+isinA。實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。虛數沒有正負可言。不是實數的復數,即使是純虛數,也不能比較大小。
虛數就是其平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
『柒』 數學中i是什麼意思
數學中i是一個虛數單位,可以指不實的數字或並非表明具體數量的數字。虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i²=-1。虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
可以將虛數bi添加到實數a以形成形式a+bi的復數,其中實數a和b分別被稱為復數的實部和虛部。一些使用術語純虛數來表示所謂的虛數,虛數表示具有非零虛部的任何復數。在數學里,將偶指數冪是負數的數定義為純虛數。所有的虛數都是復數。定義為i²=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對於z=a+bi,也可以表示為e的iA次方的形式,其中e是常數,i為虛數單位,A為虛數的幅角,即可表示為z=cosA+isinA。
『捌』 數學i是什麼意思
虛數單位,
i^2=-1,有了虛數,就可以研究數的范圍更廣,
比如一元二次函數在任何時候都可以看成有解的了