『壹』 大學生數學建模競賽考什麼啊
如下:
競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過高等學校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。
參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。
中國大學生數學建模競賽相關意義:
1、培養創新意識和創造能力。
2、訓練快速獲取信息和資料的能力。
3、鍛煉快速了解和掌握新知識的技能。
4、培養團隊合作意識和團隊合作精神。
5、增強寫作技能和排版技術。
6、榮獲國家級獎勵有利於保送研究生
7、榮獲國際級獎勵有利於申請出國留學。
8、更重要的是訓練人的邏輯思維和開放性思考方式。
『貳』 數學建模的建模題目
1992年
(A) 施肥效果分析問題(北京理工大學:葉其孝)
(B) 實驗數據分解問題(華東理工大學:俞文此; 復旦大學:譚永基)
1993年
(A) 非線性交調的頻率設計問題(北京大學:謝衷潔)
(B) 足球排名次問題(清華大學:蔡大用)
1994年
(A) 逢山開路問題(西安電子科技大學:何大可)
(B) 鎖具裝箱問題(復旦大學:譚永基,華東理工大學:俞文此)
1995年
(A) 飛行管理問題(復旦大學:譚永基,華東理工大學:俞文此)
(B) 天車與冶煉爐的作業調度問題(浙江大學:劉祥官,李吉鸞)
1996年
(A) 最優捕魚策略問題(北京師范大學:劉來福)
(B) 節水洗衣機問題(重慶大學:付鸝)
1997年
(A) 零件參數設計問題(清華大學:姜啟源)
(B) 截斷切割問題(復旦大學:譚永基,華東理工大學:俞文此)
1998年
(A) 投資的收益和風險問題(浙江大學:陳淑平)
(B) 災情巡視路線問題(上海海運學院:丁頌康) 1999年
(A) 自動化車床管理問題(北京大學:孫山澤)
(B) 鑽井布局問題(鄭州大學:林詒勛)
(C) 煤矸石堆積問題(太原理工大學:賈曉峰)
(D) 鑽井布局問題(鄭州大學:林詒勛)
2000年
(A) DNA序列分類問題(北京工業大學:孟大志)
(B) 鋼管訂購和運輸問題(武漢大學:費甫生)
(C) 飛越北極問題(復旦大學:譚永基)
(D) 空洞探測問題(東北電力學院:關信)
2001年
(A) 血管的三維重建問題(浙江大學:汪國昭)
(B) 公交車調度問題(清華大學:譚澤光)
(C) 基金使用計劃問題(東南大學:陳恩水)
(D) 公交車調度問題(清華大學:譚澤光)
2002年
(A) 車燈線光源的優化設計問題(復旦大學:譚永基,華東理工大學:俞文此)
(B) 彩票中的數學問題(解放軍信息工程大學:韓中庚)
(C) 車燈線光源的優化設計問題(復旦大學:譚永基,華東理工大學:俞文此)
(D) 賽程安排問題(清華大學:姜啟源)
2003年
(A) SARS的傳播問題(組委會)
(B) 露天礦生產的車輛安排問題(吉林大學:方沛辰)
(C) SARS的傳播問題(組委會)
(D) 搶渡長江問題(華中農業大學:殷建肅)
2004年
(A) 奧運會臨時超市網點設計問題(北京工業大學:孟大志)
(B) 電力市場的輸電阻塞管理問題(浙江大學:劉康生)
(C) 酒後開車問題(清華大學:姜啟源)
(D) 招聘公務員問題(解放軍信息工程大學:韓中庚)
2005年
(A) 長江水質的評價和預測問題(解放軍信息工程大學:韓中庚)
(B) DVD在線租賃問題(清華大學:謝金星等)
(C) 雨量預報方法的評價問題(復旦大學:譚永基)
(D) DVD在線租賃問題(清華大學:謝金星等)
2006年
(A) 出版社的資源配置問題(北京工業大學:孟大志)
(B) 艾滋病療法的評價及療效的預測問題(天津大學:邊馥萍)
(C) 易拉罐的優化設計問題(北京理工大學:葉其孝)
(D) 煤礦瓦斯和煤塵的監測與控制問題(解放軍信息工程大學:韓中庚)
2007年
(A) 中國人口增長預測
(B) 乘公交,看奧運
(C) 手機「套餐」優惠幾何
(D) 體能測試時間安排
2008年
(A)數碼相機定位,
(B)高等教育學費標准探討,
(C)地面搜索,
(D)NBA賽程的分析與評價
2009年
(A)制動器試驗台的控制方法分析
(B)眼科病床的合理安排
(C)衛星和飛船的跟蹤測控
(D)會議籌備
2010年
(A)儲油罐的變位識別與罐容表標定
(B)2010年上海世博會影響力的定量評估
(C)輸油管的布置
(D)對學生宿舍設計方案的評價
2011年
(A)城市表層土壤重金屬污染分析
(B)交巡警服務平台的設置與調度
(C)企業退休職工養老金制度的改革
(D)天然腸衣搭配問題
2012年
(A)葡萄酒的評價
(B)太陽能小屋的設計
(C)腦卒中發病環境因素分析及干預
(D)機器人避障問題
2013年
(A)車道被佔用對城市道路通行能力的影響
(B)碎紙片的拼接復原
(C)古塔的變型
(D)公共自行車服務系統
2014年
(A)嫦娥三號軟著陸軌道設計與控制策略
(B)創意平板折疊桌
(C)生豬養殖場的經營管理
(D)儲葯櫃的設計
2015年
(A)太陽影子定位
(B)「互聯網+」時代的計程車資源配置
(C)月上柳梢頭
(D)眾籌築屋規劃方案設計
建模好處
1. 培養創新意識和創造能力
2.訓練快速獲取信息和資料的能力
3.鍛煉快速了解和掌握新知識的技能
4.培養團隊合作意識和團隊合作精神
5.增強寫作技能和排版技術
6.榮獲國家級獎勵有利於保送研究生
7.榮獲國際級獎勵有利於申請出國留學
8.更重要的是訓練人的邏輯思維和開放性思考方式
『叄』 數學建模是關於什麼的,具體做些什麼大神們幫幫忙
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。 我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。 數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。 數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。 應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的個重要方面,現在許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以後的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟體及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題。數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習慾望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數舉素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網路、層次分析法、模糊數學,數學軟體包的使用等等「短課程」(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能。培訓中廣泛地採用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用,競賽中一定要使用計算機及相應的軟體,如Mathemathmatica,Matlab,Mapple,甚至排版軟體等。 數學建模的幾個過程: 模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。 模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。 模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具) 模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。 模型分析:對所得的結果進行數學上的分析。 模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。 模型應用:應用方式因問題的性質和建模的目的而異。
『肆』 數學建模具體有些什麼內容如何進行
一、定義
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段.
數學建模就是用數學語言描述實際現象的過程.這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向.這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容.
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程.
數學模型一般是實際事物的一種數學簡化.它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別.要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等.為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學.使用數學語言描述的事物就稱為數學模型.有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代.
二、數學建模的幾個過程
模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息.用數學語言來描述問題.
模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設.
模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構.
模型求利用獲取的數據資料,對模型的所有參數做出計算(估計).
模型分析:對所得的結果進行數學上的分析.
模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性.如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋.如果模型與實際吻合較差,則應該修改假設,再次重復建模過程.
模型應用:應用方式因問題的性質和建模的目的而異.
『伍』 數學建模中的工程問題主要有哪些要用到什麼知識最好舉例說明,謝謝!
某工程有甲、乙兩隊合作6天完成,廠家需付甲乙兩隊共8700元,乙、丙2隊合作10天完成,廠家需付9500元,甲、丙2隊合做5天完成全部工程的2/3,廠家需付5500元。
(1)求甲、乙、丙各隊單獨完成全工程需多少天?
(2)若要求不超過15天完成全部工程,問由哪隊單獨完成此工程花的錢最少?
用二元一次方程組解的步驟如下:
設甲乙丙每隊每天各完成x,y
由「乙丙兩對合作10天完成」
得丙每天完成(1/10-y)
再依據題意有:
(x+y)*6=1
(x+1/10-y)*5=2/3
解得x=1/10,y=1/15
即甲每天完成1/10,乙每天完成1/15,再算得丙每天完成1/30
工期要求不超過15天完成全部工程,所以可由甲或乙隊單獨完成這項工程
可設甲隊每天酬金m元,乙隊每天n元
由「乙丙兩隊合作10天完成,廠家需付乙丙兩隊共9500元」可得
得丙每天酬金為9500/10-n=950-n
同上部分一樣,可列方程:
(m+n)*6=8700
(m+950-n)*5=5500
解得m=800,n=650
即甲隊每天需800元,乙隊每天需650元
所以,由甲隊完成共需工程款800*10=8000
由乙隊完成共需工程款650*15=9750
8000<9750
因此由甲隊單獨完成此項工程花錢最少,需要8000元,且能在15天內完成
工程問題主要就是要知道這裡面的效率,時間,總量。這是最基礎的
『陸』 數學建模a題b題c題d題區別
每年的全國大學生數學建模比賽分兩組:本科組 ,專科組。a、b供本科學生做;c、d供專科學生做。
全國大學生數學建模競賽創辦於1992年,每年一屆,已成為全國高校規模最大的基礎性學科競賽,也是世界上規模最大的數學建模競賽。
2018年,來自全國34個省/市/區(包括香港、澳門和台灣)及美國和新加坡的1449所院校/校區、42128個隊(本科38573隊、專科3555隊)、超過12萬名大學生報名參加本項競賽。
數學建模比賽的概念:
簡單地說:數模競賽就是對實際問題的一種數學表述。具體一點說:數學模型是關於部分現實世界為某種目的的一個抽象的簡化的數學結構。
更確切地說:數學模型就是對於一個特定的對象為了一個特定目標,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。數學結構可以是數學公式,演算法、表格、圖示等。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程(見數學建模過程流程圖)。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
以上內容參考:網路-中國大學生數學建模競賽