導航:首頁 > 數字科學 > 大學數學必修是什麼

大學數學必修是什麼

發布時間:2023-03-07 23:54:30

㈠ 大學數學學什麼

大學數學學的是高等數學的內容。主要包括極限、導數、微積分以及空間解析幾何。

極限

數學中的「極限」指某一個函數中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值A不斷地逼近而「永遠不能夠重合到A」的過程。此變數永遠趨近的值A叫做「極限值」。

導數

導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。

微積分

微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

㈡ 全日制大學要學的數學課程都有什麼

數學專業分為兩種,師范類和非師范類的,其中師范類必修,(還包含教育學,獲取教師資格證的必要條件),非師范類選修,(但有的院校不開這門課),取絕於所報的院校。
數學系專業必修課程,主要包括:高等代數,數學分析,常微分方程,復變函數,解析幾學,拓撲學,實變函數,概率,數理統計等,這些課程主要是大一大二修,,學校不同,開設的略有不同。師范類還設中學數學方法論,中學數學競賽,選修的有組合數學,數學軟體,小波分析,微分流形,偏微分方程,數學史等

㈢ 大學數學學什麼

大學數學主要有 高等數學、線性代數、概率統計、數值分析、離散數學。其中高數、線代、概統都是理工類學生必修科目。文科生只需學比較簡單的高數就行了。而考研數學也就考這三科。 高數主要有導數、微積分、空間解釋幾何、多元函數微分、重積分、常微分方程等 線性代數主要有矩陣、行列式、向量空間、解線性方程組、矩陣可對角化、實二次型等 概率統計主要有隨機事件、事件概率、條件概率、隨機變數、統計與統計學、點估計等 離散數學主要有數理邏輯、集合、二元關系、函數、代數、格與布爾代數、圖論等 數值分析主要有插值法、函數逼近、數值積分、常微分方程、方程求根、解線性方程、迭代法等 2。應該有吧。在微電子、通信、電信等專業也要學。不過這也和計算機有關。。不過現在分科也沒有絕對的。 3。編程。誤差估計。演算法分析與演算法設計。我覺得都需要用到。 4。基本上科學研究都回或多或少要應用到統計數學吧。

㈣ 大學數學主要學的是些什麼內容

大學的數學學習內容屬於高等數學,主要的內容有:

1、極限

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。

2、微積分

微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。

3、空間解析幾何

藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。

(4)大學數學必修是什麼擴展閱讀

歷史發展

一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。

19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。

分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。

㈤ 大學數學專業學什麼課程

大學數學專業學什麼課程如下:

數學分析III analysis calculus 5

高等代數II algebra algebra 5

高等代數II algebra algebra 5

程序設計 CS cs 4

常微分方程 analysis ODE 3

抽象代數 algebra algebra 3

復變函數 analysis 函數論 3

實變函數 analysis 函數論 3

數學模型 applied math applied math 3

概率論 P&S probability 3

泛函分析 analysis 泛函分析 3

數理方程 analysis PDE 3

基礎力學 applied math applied math 3

畢業論文(含專題討論) applied math applied math 6

數學與應用數學專業必修課程:

以上+

拓撲學 geometry topology 3

微分幾何 geometry geometry 3

信息與計算科學專業分4個方向,每個方向要求的課程不一樣,比如說計算數學方向要求學 微分方程數值解法 以及其他一些計算類的選修課程。

總的來說,必修課就是數學專業本科的一些骨幹課程,是所有合格的數學專業本科生都應當掌握的基礎知識。所以也沒什麼挑肥揀瘦的。。本院的課程設置,信計方向的學生不用修拓撲與微分幾何。

至於選修課程,本人上過的都組合數學、數論基礎,旁聽過抽代續論、應用偏微分方程、復分析, etc.其實雖然列表裡面有這么多選修課,但並不是都能開出來。比如說多復變函數論,本院能開多復變的老師大概也就一兩個。

而且實際上本科生能聽的課程資源不僅僅是本科課程,研究生課程也可以隨意旁聽。本人也旁聽過一兩門研究生課。

㈥ 大學數學學什麼

大學數學主要有 高等數學、線性代數、概率統計、數值分析、離散數學.其中高數、線代、概統都是理工類學生必修科目.文科生只需學比較簡單的高數就行了.而考研數學也就考這三科.高數主要有導數、微積分、空間解釋幾何...

㈦ 大學裡面高等數學都學的什麼啊

在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。

理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。

微積分的基本概念和內容包括微分學和積分學。

微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。

數理統計是伴隨著概率論的發展而發展起來的一個數學分支,研究如何有效的收集、整理和分析受隨機因素影響的數據,並對所考慮的問題作出推斷或預測,為採取某種決策和行動提供依據或建議。

概率論是研究隨機現象數量規律的數學分支。隨機現象是相對於決定性現象而言的。在一定條件下必然發生某一結果的現象稱為決定性現象。

例如在標准大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現象則是指在基本條件不變的情況下,每一次試驗或觀察前,不能肯定會出現哪種結果,呈現出偶然性。例如,擲一硬幣,可能出現正面或反面。

隨機現象的實現和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為一個基本事件,一個或一組基本事件統稱隨機事件,或簡稱事件。典型的隨機試驗有擲骰子、扔硬幣、抽撲克牌以及輪盤游戲等。

線性代數是數學的一個分支,它的研究對象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題。

因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

(7)大學數學必修是什麼擴展閱讀

19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。

原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取復數值的復變數和向量、張量形式的。

以及各種幾何量、代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(概率)空間——范疇和隨機過程。描述變數間依賴關系的概念由函數發展到泛函、變換以至於函子。

與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。

按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就是說,幾何是將各種空間形式置於變換之下來來研究的。

無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮和實無窮兩種形式出現。

在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函數的極限。數學分析以它為基礎,建立了刻畫函數局部和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。

另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究對象本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。這是數學中的實無窮。能夠處理這類無窮集合,是數學水平與能力提高的表現。

為了處理這類無窮集合,數學中引進了各種結構,如代數結構、序結構和拓撲結構。另外還有一種度量結構,如抽象空間中的范數、距離和測度等,它使得個體之間的關系定量化、數字化,成為數學的定性描述和定量計算兩方面的橋梁。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。

數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的復雜計算問題。

參考資料

高等數學(基礎學科名稱)_網路

閱讀全文

與大學數學必修是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1345
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:880
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1018
win7如何刪除電腦文件瀏覽歷史 瀏覽:1050
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1695
西安瑞禧生物科技有限公司怎麼樣 瀏覽:958
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1646
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053