導航:首頁 > 數字科學 > 初中數學如何估值

初中數學如何估值

發布時間:2023-03-08 17:01:58

初中數學解題技巧

有關初中數學解題技巧

初中數學里的解題技巧是非常重要的一環,我這里有很實用的初中數學解題技巧教給大家,希望對大家有幫助!

第一部分 初中數學考試答題技巧

一、答題原則

大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。

答題時,一般遵循如下原則:

1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易後難,先選擇、填空題,後解答題。

2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。

3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。

4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。

5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。

6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 “前緊後松”而不是“前松後緊”。特別注意只能在規定位置答題,轉頁答題不予計分。

二、審題要點

審題包括瀏覽全卷和細讀試題兩個方面。

一是開考前瀏覽。開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。

二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。

1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。

2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“後果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。

3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。

三、時間分配

近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目

中應有“分數時間比”的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。

在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。

在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。

一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。

四、大題和難題

一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。

五、各種題型的解答技巧

1.選擇題的答題技巧

(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。

(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。

(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。

2.填空題答題技巧

(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。

3.解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

六、如何檢查

在考試中,主動安排時間檢查答卷是保證考試成功的`一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。

檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。

選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。

對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。

計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較“像”,這里所說的“像”是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做

七、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。

同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:

1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。

2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。

3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。

第二部分 提高解題速度的八步驟

在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。

幾乎每個學生都知道,要想取得好成績,必須努力學習,只有加強練習,多做習題,才能熟能生巧。可是有些學生天天趴在那裡做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習題,難道不應找一找原因嗎?何況,我們並不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關鍵在於你想與不想了。

那麼,究竟怎樣才能提高解題速度呢?

首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。

第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

第四,要學會歸納總結。在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。

第五,應先易後難,逐步增加習題的難度。人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。

第六,認真、仔細地審題。對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。

第七,學會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。

最後,對於常用的公式,如數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。

總之,學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。

;

❷ 初中數學解題技巧

導語:初中數學解題技巧推薦。學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。

初中數學解題技巧推薦

一、答題原則

大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。

答題時,一般遵循如下原則:

1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易後難,先選擇、填空題,後解答題。

2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。

3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。

4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。

5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。

6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 “前緊後松”而不是“前松後緊”。特別注意只能在規定位置答題,轉頁答題不予計分。

二、審題要點

審題包括瀏覽全卷和細讀試題兩個方面。

一是開考前瀏覽。 開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。

二是答題過程中的仔細審題。 這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。

1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。

2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“後果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。

3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。

三、時間分配

近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目中應有“分數時間比”的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。

在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。

在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的'心理壓力,而影響正常答卷。

一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。

五、大題和難題

一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。

六、各種題型的解答技巧

1.選擇題的答題技巧

(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。

(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。

(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。

2.填空題答題技巧

(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。

3.解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

七、如何檢查

在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。

檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。

選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。

對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。

計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較“像”,這里所說的“像”是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做

八、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。

同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:

1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。

2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。

3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。

初中數學解題技巧推薦

首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。

你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。

第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。

例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

第三,對基本的解題步驟和解題方法也要熟悉。

解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

第四,要學會歸納總結。

在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。

第五,應先易後難,逐步增加習題的難度。

人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。

比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。

第六,認真、仔細地審題。

對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。

第七,學會畫圖。

畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。

❸ 初中數學解題思路

初中數學解題思路

數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。下面我就給大家講講初中數學解題思路,希望對大家有幫助。

初中數學解題思路

一、如何獲得數學解題思路

解題思路的獲得,一般要經歷三個步驟:

1.從理解題意中提取有用的信息,如數式特點,圖形結構特徵等;

2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;

3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。

數學的表達,有3種方式:

1.文字語言,即用漢字表達的內容;

2.圖形語言,如幾何的圖形,函數的圖象;

3.符號語言,即用數學符號表達的內容,比如AB∥CD。

在初中學段中,不僅要學好數學知識,同時也要注意數學思想方法的學習,掌握好思想和方法,對數學的學習將會起到事半功倍的良好效果。其中整體與分類、類比與聯想、轉化與化歸和數形結合等不僅僅是學好數學的重要思想,同時對您今後的生活也必將起重要的作用。

先來看轉化思想:

我們知道任何事物都在不斷的運動,也就是轉化和變化。在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以後再去解決。體現在數學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。

如方程的學習中,一元一次方程是學習方程的基礎,那麼在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。把未知轉化為已知,把復雜轉化為簡單。同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。

所以,在數學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。

二、初中數學學生必備的解題理念

1.如果把解題比做打仗,那麼解題者的「兵器」就是數學基礎知識,「兵力」就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是「兵法」。

2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答。「問題是數學的心臟」。

3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對於學生而言,問題有三個特徵:

(1)接受性:學生願意解決並且具有解決它的知識基礎和能力基礎。

(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對於教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

5.「問題解決」有不同的解釋,比較典型的觀點可歸納為4種:

(1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

(2)問題解決是一個探究過程。把「問題解決」定義為「將先前已獲得的知識用於新的、不熟悉的情境的過程」。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

(3)問題解決是一個學習目的。「學習數學的主要目的在於問題解決」。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立於特殊的問題,獨立於一般過程或方法,也獨立於數學的具體內容。

(4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界裡,學習生存的本領。

6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究「怎樣解」,較少問「為什麼這樣解」。在這些誤區里,「解題而不立法、作答而不立論」。

7.人的思維依賴於必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識並加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:「貨源充足和組織良好的知識倉庫是一個解題者的重要資本」。

8.熟練掌握數學基礎知識的體系。對於中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、准確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。

9.數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現「相容」和「不容」的兩種可能。出現「相容」時,產生新結果,且被原概念吸收,並發展成新概念;當出現「不容」時,則產生了所謂的問題。這時,思維出現迂迴,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。

10.解題能力,表現於發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想像能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:

(1)掌握解題的科學程序;

(2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

(3)掌握解題的基本策略,能「因題制宜」地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;

(4)具有敏銳的直覺。應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,並非對每一個數學細節都洞察無遺,並非總能藉助於「三段論」的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:

11.解題具有實踐性與探索性的特徵,「就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題」,「尋找題解,不能教會,而只能靠自己學會」。

12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經驗所獲得的有序組合,就好像建築上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說並不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現後如何全力以赴,直撲問題的核心或主幹;當一旦突破關卡,如何去佔領問題的至高點,並冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。

14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講台裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。這樣的教師越高明,學生越自卑。

三、淺議初中生數學學習差的原因

初中階段學生數學學習成績兩極分化非常嚴重,學習差的學生占的比例較大,特別在初中二年級表現得尤為明顯。那麼,造成兩極分化比較嚴重的原因是什麼?如何預防嚴重分化?本文結合自己的教學實踐作一些粗淺的探討。

初中數學解題思路

一、造成分化的原因

1、被動學習。

許多同學進初中入後,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到「門道」。

2、學不得法。

老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3、不重視基礎。

一些「自我感覺良好」的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高鶩遠,重「量」輕「質」,陷入題海。到正規作業或考試中不是演算出錯就是中途「卡殼」。

4、思維方式和學習方法不適應數學學習要求。

初二階段是數學學習分化最明顯的階段。一個重要原因是初中階段數學課程對學生抽象邏輯思維能力要求有了明顯提高。而初二學生正處於由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思維能力發展快一些,有的則慢一些,因此表現出數學學習接受能力的差異。除了年齡特徵因素以外,更重要的是教師沒有很好地根據學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發展,提高學習能力和學習適應性。

二、減少學習分化的教學對策

1、培養學生學習數學的興趣興趣是推動學生學習的動力,學生如果能在學習數學中產生興趣,就會形成較強的求知慾,就能積極主動地學習。培養學生數學學習興趣的途徑很多,如讓學生積極參與教學活動,並讓其體驗到成功的愉悅;創設一個適度的學習競賽環境;發揮趣味數學的作用;提高教師自身的教學藝術等等。

2、教會學生學習

(1)加強學法指導,培養良好學習習慣反復使用的方法將變成人們的習慣行為。什麼是良好的學習習慣?我向學生做了如下具體解釋,它包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

(2)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

(3)課前自學是學生上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

(4)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。「學然後知不足」,課前自學過的.同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

(5)及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由「懂」到「會」。

(6)獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由「會」到「熟」。

(7)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由「熟」到「活」。

(8)系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系。以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由「活」到「悟」。

3.循序漸進,防止急躁由於年齡較小,閱歷有限,為數不少的初中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天「沖刺」一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,我們讓學生懂得學習是一個長期的鞏固舊知、發現新知的積累過程,決非一朝一夕可以完成,為什麼初中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

三、在數學教學過程中加強抽象邏輯思維的訓練和培養。

要針對後進生抽象邏輯思維能力不適應數學學習的問題,從初一代數教學開始就加強抽象邏輯能力訓練,始終把教學過程設計成學生在教師指導下主動探求知識的過程。這樣學生不僅學會了知識,還學到了數學的基本思想和基本方法,培養了學生邏輯思維能力,為進一步學習奠定較好的基礎。

四、建立良好的師生關繫心理學認為,人的情感與認識過程是相聯系的,任何認識過程都伴隨著情感。

初中生對某一學科的學習興趣與學習情感密不可分,他們往往不是從理性上認為某學科重要而去學好它,常常因為不喜歡某課任老師而放棄該科的學習。和諧的師生關系是保證和促進學習的重要因素,特別要對後進生熱情輔導,真誠幫助,從精神上多鼓勵,學法上多指導,樹立他們的自信心,提高學習能力。

初中選擇填空解題技巧

選擇題和填空題是中考中必考的題目,主要考查對概念、基礎知識的理解、掌握及其應用.填空題所佔的比例較大,是學生得分的重要來源.近幾年,隨著中考命題的創新、改革,相繼推出了一些題意新穎、構思精巧、具有一定難度的新題型.這就要求同學切實抓好基礎知識的掌握,強化訓練,提高解題的能力,才能在中考中減少失誤,有的放矢,從容應對。

解題規律:要想迅速、正確地解選擇題、填空題,除了具有準確計算能力、嚴密的推理能力外,還要有解選擇題、填空題的方法與技巧.常用方法有以下幾種:

(1)直接推演法:

直接從命題給出的條件出發,運用概念,公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法.

(2)驗證法:

由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代人條件中去驗證,找出正確答案.此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法.

(3)特值法:

用合適的特殊元素(如數或圖形)代人題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法.

(4)排除、篩選法:

對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法.

(5)圖解法:

藉助於符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法.圖解法是解選擇題常用方法之一.

(6)分析法:

直接通過對選擇題的條件和結論,作詳盡地分析、歸納和判斷,從而選出正確的結果,稱為分析法.

(7)整體代入法:

把某一代數式進行化簡,然後並不求出某個字母的取值,而是直接把化簡的結果作為一個整體代入。

初中數學解題思路技巧總結

函數與方程思想

函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系運用函數的圖像和性質去分析問題、轉化問題和解決問題。

方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程或不等式模型去解決問題。

同學們在解題時,可利用轉化思想進行函數與方程間的相互轉化。

特殊與一般的思想

用這種思想解選擇題有時特別有效,因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。

不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。

極限思想

極限思想解決問題的一般步驟為:

1、對於所求的未知量,先設法構思一個與它有關的變數;

2、確認這變數通過無限過程的結果就是所求的未知量;

3、構造函數(數列)並利用極限計演算法,得出結果或利用圖形的極限位置直接計算結果。

分類討論思想

同學們在解題時常常會遇到這樣一種情況,解到某一步之後,不能再以統一的方法、統一的式子繼續進行下去。

這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,並逐類求解,然後綜合歸納得解,這就是分類討論。

引起分類討論的原因很多,數學概念本身具有多種情形,數學運演算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。

建議同學們在分類討論解題時,要做到標准統一,不重不漏。

「傻做題」不如「巧做題」,掌握數學解題思想是解答數學題時不可缺少的一步。

初中數學解題思維方法

充分利用教材內容:首先,通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統攬教材全局,高屋建瓴。然後,建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規律。進一步確定數學知識與其思想方法之間的結合點,建立一整套豐富的教學範例或模型,最終形成一個活動的知識與思想互聯網路。

以數學知識為載體:數學思想方法的滲透應根據教學計劃有步驟地進行。一般在知識的概念形成階段導入概念性數學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等。在知識的結論、公式、法則等規律的推導階段,要強調和灌輸思維方法,如解方程的如何消元降次、函數的數與形的轉化、判定兩個三角形相似有哪些常用思路等。在知識的總結階段或新舊知識結合部分,要選配結構型的數學思想,如函數與方程思想體現了函數、方程、不等式間的相互轉化,分類討論思想體現了局部與整體的相互轉化。

重知識的形成過程:數學知識發生的過程也是其思想方法產生的過程。在此過程中,要向學生提供豐富的、典型的以及正確的直觀背景材料,創設使認知主體與客體之間激發作用的環境和條件,通過對知識發生過程的展示,使學生的思維和經驗全部投入到接受問題、分析問題和感悟思想方法的挑戰之中,從而主動構建科學的認知結構將數學思想方法與數學知識融會成一體,最終形成獨立探索分析、解決問題的能力。

;

❹ 初中數學解題思路和方法

初中階段學生數學學習成績兩極分化非常嚴重,學習差的學生占的比例較大,如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。那麼有哪些解題思路可以幫助初中數學提高得分呢?

一、如何獲得數學解題思路

解題思路的獲得,一般要經歷三個步驟:1.從理解題意中提取有用的信息,如數式特點,圖形結構特徵等;2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。

數學的表達,有3種方式:1.文字語言,即用漢字表達的內容;2.圖形語言,如幾何的圖形,函數的圖象;3.符號語言,即用數學符號表達的內容,比如AB∥CD。

在初中學段中,不僅要學好數學知識,同時也要注意數學思想方法的學習,掌握好思想和方法,對數學的學習將會起到事半功倍的良好效果。

其中整體與分類、類比與聯想、轉化與化歸和數形結合等不僅僅是學好數學的重要思想,同時對您今後的生活也必將起重要的作用。

先來看轉化思想:

我們知道任何事物都在不斷的運動,也就是轉化和變化。

在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以後再去解決。

體現在數學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。

如方程的學習中,一元一次方程是學習方程的基礎,那麼在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,

轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。

把未知轉化為已知,把復雜轉化為簡單。

同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。

在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。

所以,在數學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。

二、初中數學學生必備的解題理念

1.如果把解題比做打仗,那麼解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。

2.數學家存在的主要理由就是解決問題。

因此,數學的真正的組成部分是問題和解答。

“問題是數學的心臟”。

3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。

問題就是矛盾。

對於學生而言,問題有三個特徵:

(1)接受性:學生願意解決並且具有解決它的知識基礎和能力基礎。

(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對於教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

(1)問題解決是心理活動。

面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

(2)問題解決是一個探究過程。

把“問題解決”定義為“將先前已獲得的知識用於新的、不熟悉的情境的過程”。

這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

(3)問題解決是一個學習目的。

“學習數學的主要目的在於問題解決”。

因而,學習怎樣解決問題就成為學習數學的根本原因。

此時,問題解決就獨立於特殊的問題,獨立於一般過程或方法,也獨立於數學的具體內容。

(4)問題解決是一種生存能力。

重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界裡,學習生存的本領。

6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。

其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。

第三個表現是,多研究“怎樣解”,較少問“為什麼這樣解”。

在這些誤區里,“解題而不立法、作答而不立論”。

7.人的思維依賴於必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。

豐富的知識並加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。

解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

8.熟練掌握數學基礎知識的體系。

對於中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。

還應掌握中學數學競賽涉及的基礎理論。

深刻理解數學概念、准確掌握數學定理、公式和法則。

熟悉基本規則和常用的方法,不斷積累數學技巧。

9.數學的本質活動是思維。

思維的對象是概念,思維的方式是邏輯。

當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。

出現“相容”時,產生新結果,且被原概念吸收,並發展成新概念;當出現“不容”時,則產生了所謂的問題。

這時,思維出現迂迴,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。

至此,也產生新的結果,也被原思維吸收。

這就是一個思維活動的全過程。

10.解題能力,表現於發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。

其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想像能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。

其基本要求包括:

(1)掌握解題的科學程序;

(2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

(3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;

(4)具有敏銳的直覺。

應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,並非對每一個數學細節都洞察無遺,並非總能藉助於“三段論”的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:

11.解題具有實踐性與探索性的特徵,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。

12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。

成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。

成功經驗所獲得的有序組合,就好像建築上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。

教育學生解題是一種意志教育。

當學生求解那些對他來說並不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現後如何全力以赴,直撲問題的核心或主幹;當一旦突破關卡,如何去佔領問題的至高點,並冷靜地府視全局,從而得到問題的完善解決。

如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。

14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。

如果教師掩瞞了解題中的曲折,自己在講台裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。

這樣的教師越高明,學生越自卑。

三、淺議初中生數學學習差的原因

一、造成分化的原因

1、被動學習。

許多同學進初中入後,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。

表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”。

2、學不得法。

老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。

而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。

也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3、不重視基礎。

一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。

到正規作業或考試中不是演算出錯就是中途“卡殼”。

4、思維方式和學習方法不適應數學學習要求。

初二階段是數學學習分化最明顯的階段。

一個重要原因是初中階段數學課程對學生抽象邏輯思維能力要求有了明顯提高。

而初二學生正處於由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思維能力發展快一些,有的則慢一些,因此表現出數學學習接受能力的差異。

除了年齡特徵因素以外,更重要的是教師沒有很好地根據學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發展,提高學習能力和學習適應性。

二、減少學習分化的教學對策

1、培養學生學習數學的興趣興趣是推動學生學習的動力,學生如果能在學習數學中產生興趣,就會形成較強的求知慾,就能積極主動地學習。

培養學生數學學習興趣的途徑很多,如讓學生積極參與教學活動,並讓其體驗到成功的.愉悅;創設一個適度的學習競賽環境;發揮趣味數學的作用;提高教師自身的教學藝術等等。

2、教會學生學習

(1)加強學法指導,培養良好學習習慣反復使用的方法將變成人們的習慣行為。

什麼是良好的學習習慣?我向學生做了如下具體解釋,它包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

(2)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。

閱讀全文

與初中數學如何估值相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1345
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:880
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1018
win7如何刪除電腦文件瀏覽歷史 瀏覽:1050
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1695
西安瑞禧生物科技有限公司怎麼樣 瀏覽:958
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1646
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053