㈠ 數學定理有哪些
1、三角形各邊的垂直一平分線交於一點。
2、勾股定理(畢達哥拉斯定理)
勾股定理是一個基本的幾何定理,直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。也就是說,設直角三角形兩直角邊為a和b,斜邊為c,那麼a²+b²=c² 。
3、從三角形的各頂點向其對邊所作的三條垂線交於一點
4、射影定理(歐幾里得定理)
5、三角形的三條中線交於一點,並且,各中線被這個點分成2:1的兩部分
6、設三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設垂足為M,則AH=2OM
7、三角形的外心,垂心,重心在同一條直線上。
8、(九點圓或歐拉圓或費爾巴赫圓)三角形中,三邊中心、從各頂點向其對邊所引垂線的垂足,以及垂心與各頂點連線的中點,這九個點在同一個圓上,
9、四邊形兩邊中點的連線和兩條對角線中點的連線交於一點
10、間隔的連接六邊形的邊的中點所作出的兩個三角形的重心是重合的。
11、歐拉定理:三角形的外心、重心、九點圓圓心、垂心依次位於同一直線(歐拉線)上
12、庫立奇*大上定理:(圓內接四邊形的九點圓)
圓周上有四點,過其中任三點作三角形,這四個三角形的九點圓圓心都在同一圓周上,我們把過這四個九點圓圓心的圓叫做圓內接四邊形的九點圓。
13、(內心)三角形的三條內角平分線交於一點,內切圓的半徑公式:$r=sqrt{[(s-a)(s-b)(s-c)]/s}$s為三角形周長的一半
14、(旁心)三角形的一個內角平分線和另外兩個頂點處的外角平分線交於一點
15、中線定理:(巴布斯定理)設三角形ABC的邊BC的中點為P,則有$AB^2+AC^2=2(AP^2+BP^2)$
16、斯圖爾特定理:P將三角形ABC的邊BC內分成m:n,則有$nxxAB^2+mxxAC^2=(m+n)AP^2+(mn)/(m+n)BC^2$
17、波羅摩及多定理:圓內接四邊形ABCD的對角線互相垂直時,連接AB中點M和對角線交點E的直線垂直於CD
18、阿波羅尼斯定理:到兩定點A、B的距離之比為定比m:n(值不為1)的點P,位於將線段AB分成m:n的內分點C和外分點D為直徑兩端點的定圓周上
19、托勒密定理:
圓的內接四邊形中,兩對角線所包矩形的面積等於 一組對邊所包矩形的面積與另一組對邊所包矩形的面積之和。 從這個定理可以推出正弦、餘弦的和差公式及一系列的三角恆等式,托勒密定理實質上是關於共圓性的基本性質。
20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形
㈡ 有美好寓意的數學公式是什麼
費馬最後的定理:
費馬大定理,又被稱為「費馬最後的定理」,常見的表述為當整數n>2時,關於xn+ yn= zn的方程沒有正整數解。
故事介紹:
1637年的某一天,法國律師兼業余數學家費馬,在一本書的空白處寫下了下面一段話:
任何立方數都不可能寫為兩個立方數之和的形式,也沒有任何四次方數可以寫成另外兩個四次方數的形式。普遍地說,任何二次以上的冪都不可能寫成另外兩個同次冪的形式。
即,當指數n大於2時,上述方程沒有整數解。
在寫下上面的猜想後,這個天生羞澀、沉默寡言的人卻跟世界玩了一個惡作劇,他又寫道:
對此我已經找到了一個真正絕妙的證明,但這里空白處太小,寫不下。
然而,他怎料到,他隨意寫下的兩句手記,卻讓350年間的無數數學家耗盡一生,也沒能找到那個證明。直到1994年,英國人安德魯·懷爾斯才證明了費馬最後定理。
㈢ 數學的美體現在哪些方面
幾乎所有的數學家都認為數學是美的。著名數學家巴拿赫說「數學是最美的,也是最有力的人類創造。」
再給大家看一些圖片感受一下;
(轉自頭條號-數學經緯網)
㈣ 在世界上,最著名、最美麗和最偉大的數學公式有哪些
今天我們整理了這10著名公式,分享給大家:
No.10 圓的周長公式(The Length of the Circumference of a Circle)
創立者:古人
意義:自然界之美的數學表達。
這公式賊牛逼了,初中學到現在。目前,人類已經能得到圓周率的2061億位精度。還是挺無聊的。現代科技領域使用的-圓周率值,有十幾位已經足夠了。如果用 35位精度的-圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。現在的人計算圓周率,多數是為了驗證計算機的計算能力,還有就是為了興趣。
No.9 傅立葉變換(The Fourier Transform)
創立者:讓·巴普蒂斯·約瑟夫·傅立葉
意義:將電場和磁場有機地統一成完整的電磁場。並創立了電磁場理論,而沒有電磁學理論,就不會有現在的社會文明。任何一個能把這幾個公式看懂的人,一定會感到背後有涼風——如果沒有上帝,怎麼解釋如此完美的方程?
這組公式融合了電的高斯定律、磁的高斯定律、法拉第定律以及安培定律。
比較謙虛的評價是:「一般地,宇宙間任何的電磁現象,皆可由此方程組解釋。」到後來麥克斯韋僅靠紙筆演算,就從這組公式預言了電磁波的存在。
我們不是總喜歡編一些故事,比如愛因斯坦小時候因為某一刺激從而走上了發奮學習、報效祖國的道路么?事實上,這個刺激就是你看到的這個方程組。也正是因為這個方程組完美統一了整個電磁場,讓愛因斯坦始終想要以同樣的方式統一引力場,並將宏觀與微觀的兩種力放在同一組式子中:即著名的「大一統理論」。
愛因斯坦直到去世都沒有走出這個隧道,而如果一旦走出去,我們將會在隧道另一頭看到上帝本人。