導航:首頁 > 數字科學 > 正態分布數學期望怎麼算

正態分布數學期望怎麼算

發布時間:2023-03-10 12:31:08

Ⅰ 正態分布的期望怎麼求


正態分布的期望求法為E(X)=X1*p(X1)+X2*p(X2)+…+Xn*p(Xn)。正態分布也稱常態分布,又名高斯分布最早由棣莫弗,在求二項分布的漸近公式中得到。若隨機變數X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標准差σ決定了分布的幅度。當μ=0,σ=1時的正態分布是標准正態分布。

Ⅱ 正態分布的數學期望推導過程!希望拍照啊!

設正態分布概率密度函數是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]

其實就是均值是u,方差是t^2

於是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)

(1)求均值

對(*)式兩邊對u求導:

∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0

約去常數,再兩邊同乘以1/(√2π)t得:

∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0

把(u-x)拆開,再移項:

∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx

也就是 ∫x*f(x)dx=u*1=u

這樣就正好湊出了均值的定義式,證明了均值就是u。

(2)方差

對(*)式兩邊對t求導:∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π

移項:∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2

也就是 ∫(x-u)^2*f(x)dx=t^2

(2)正態分布數學期望怎麼算擴展閱讀:

由於一般的正態總體其圖像不一定關於y軸對稱,對於任一正態總體,其取值小於x的概率。只要會用它求正態總體在某個特定區間的概率即可。

為了便於描述和應用,常將正態變數作數據轉換。將一般正態分布轉化成標准正態分布。

服從標准正態分布,通過查標准正態分布表就可以直接計算出原正態分布的概率值。故該變換被稱為標准化變換。(標准正態分布表:標准正態分布表中列出了標准正態曲線下從-∞到X(當前值)范圍內的面積比例。)

Ⅲ 正態分布期望如何算

這個計算有些麻煩的,不過只要熟悉了反常積分的解題技巧巧妙地構造二重積分(或用我們熟知的貝塔函數)就很容易解出來了

要計算正態分布的期望就要遇到解決積分:∫[(-∞,+∞),e^(-x^2)]dx
由函數的奇偶性知:∫[(-∞,+∞),e^(-x^2)]dx=2∫[(0,+∞),e^(-x^2)]dx
記A=∫[(0,+∞),e^(-x^2)]dx,
我們先來計算:A^2=∫[(0,+∞),e^(-x^2)]dx∫[(0,+∞),e^(-y^2)]dy
=∫[(0,+∞)]dx∫[(0,+∞),e^(-x^2-y^2)dy
作變數替換:x=rcosθ,y=rsinθ,在上式可化為
A^2=∫[(0,π/2)]dθ∫[(0,+∞),re^(-r^2)]dr=π/4
那麼A=(√π)/2
所以:∫[(-∞,+∞),e^(-x^2)]dx=2A==√π

那麼:E(X)=1/[σ√(2π)]∫[(-∞,+∞),xe^{[-(x-µ)^2)]/(2σ^2)}dx
=1/[σ√(2π)]∫[(-∞,+∞),(x-µ)e^{[-(x-µ)^2)]/(2σ^2)}dx
+ µ/[σ√(2π)]∫[(-∞,+∞),e^{[-(x-µ)^2)]/(2σ^2)}dx
第一個積分算得0,第二個積分根據上面的結論得 µ,
所以E(X)= µ

還可以用根據第一類歐拉積分與第二類歐拉積分的關系來求解

Ⅳ 正態分布的期望和方差是什麼

在概率論和統計學中,數學期望(mean)(或均值,亦簡稱期望)為試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一。

正態分布(Normal distribution)又名高斯分布(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力。若隨機變數X服從一個數學期望為μ、方差為σ^2的高斯分布,記為N(μ,σ^2)。

其概率密度函數為正態分布的期望值μ決定了其位置,其標准差σ決定了分布的幅度。因其曲線呈鍾形,因此人們又經常稱之為鍾形曲線。我們通常所說的標准正態分布是μ = 0,σ = 1的正態分布。

若隨機變數X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標准差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標准正態分布。

在統計描述中,方差用來計算每一個變數(觀察值)與總體均數之間的差異。為避免出現離均差總和為零,離均差平方和受樣本含量的影響,統計學採用平均離均差平方和來描述變數的變異程度。

由於一般的正態總體其圖像不一定關於y軸對稱,對於任一正態總體,其取值小於x的概率。只要會用它求正態總體在某個特定區間的概率即可。

為了便於描述和應用,常將正態變數作數據轉換。將一般正態分布轉化成標准正態分布。

對於連續型隨機變數X,若其定義域為(a,b),概率密度函數為f(x),連續型隨機變數X方差計算公式:D(X)=(x-μ)^2 f(x) dx

方差刻畫了隨機變數的取值對於其數學期望的離散程度。(標准差、方差越大,離散程度越大)

若X的取值比較集中,則方差D(X)較小,若X的取值比較分散,則方差D(X)較大。

因此,D(X)是刻畫X取值分散程度的一個量,它是衡量取值分散程度的一個尺度。

閱讀全文

與正態分布數學期望怎麼算相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:704
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1317
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1022
大學物理實驗干什麼用的到 瀏覽:1448
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:829
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1606
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017