① 關於小學數學「數」的概念
自然數
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……叫做自然數。
整數
自然數都是整數,整數不都是自然數。
小數
小數是特殊形式的分數。但是不能說小數就是分數。
混小數(帶小數)
小數的整數部分不為零的小數叫混小數,也叫帶小數。
純小數
小數的整數部分為零的小數,叫做純小數。
循環小數
小數部分一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。例如:0.333……,1.2470470470……都是循環小數。
純循環小數
循環節從十分位就開始的循環小數,叫做純循環小數。例如: , 。
混循環小數
與純循環小數有唯一的區別:不是從十分位開始循環的循環小數,叫混循環小數。例如, , 。
有限小數
小數的小數部分只有有限個數字的小數(不全為零)叫做有限小數。
無限小數
小數的小數部分有無數個數字(不包含全為零)的小數,叫做無限小數。循環小數都是無限小數,無限小數不一定都是循環小數。例如,圓周率π也是無限小數。
分數
表示把一個「單位1」平均分成若干份,取其中的一份或幾份的數,叫做分數。(分成0份在此不討論)
真分數
分子比分母小的分數叫真分數。
假分數
分子比分母大,或者分子等於分母的分數叫做假分數。(分母、分子為零在此不討論)
帶分數
一個整數(零除外)和一個真分數組合在一起的數,叫做帶分數。帶分數也是假分數的另一種表示形式,相互之間可以互化。
關於 (n表示自然數)是否是分數
數是由數字和數位組成。
0的意義
0既可以表示「沒有」,也可以作為某些數量的界限。如溫度等。0是一個完全有確定意義的數。
0是一個數。
0是一個偶數。
0是任何自然數(0除外)的倍數。
0有佔位的作用。
0不能作除數。
0是中性數。
約數和倍數
當甲數能被乙數整除時,就說甲數是乙數的倍數,乙數是甲數的約數。這兩個概念都是相對而存在。一個自然數,不存在是否倍數與約數。例如:「3是約數」,就是一個錯誤說法。只能是對3、6、9、……等數而言,是其中某個數的約數。
奇數與偶數
凡是能被2整除的數叫偶數,反之,不能被2整除的數叫奇數。
質數(素數)與合數
一個數的約數只有1和它本身的數叫做質數,也叫素數。反之,一個數的約數除了1和它本身以外,還有其他的約數,這個數就叫合數。
1是否質數
由於1的約數只有1個,所以1既不是質數,也不是合數。
公約數
幾個數公有的約數,叫做公約數。
它的個數是有限的,既有最大的,也有最小的。
互質數
兩個數的公約數只有1,而沒有其他公約數的,這兩個數就叫互質數。
質數與互質數
這兩個概念沒有什麼聯系。兩個質數,不能肯定就是互質數。只有兩個不相同的質數,才能肯定是互質數。另外,兩個合數既可能是互質數,也可能不是互質數,但不能說兩個合數一定不是互質數。
質因數
把一個合數分解成幾個質數相乘的形式,這樣的質數叫做質因數。
分解質因數
把一個合數分解成幾個質數相同的形式,就叫做分解質因數。
公倍數
幾個數公有的倍數,叫做公倍數。它的個數是無限的,只有最小的,沒有最大的。
最大公約數
幾個數公有的約數中,最大的一個就叫做這幾個數的最大公約數。
最小公倍數
幾個數公有的無限個倍數中,最小的一個,就叫做這幾個數的最小公倍數。
能被2整除的判斷方法
一個數能否被2整除,只要看這個數的末尾是否有0、2、4、6、8這五個數的其中一個即可。
能被5整除的判斷方法
一個數能否被5整除,只要看這個數的末尾是否有0、5這兩個數的其中一個即可。
能被3整除的判斷方法
一個數能否被3整除,只要看這個數的各個數位上數字的和能否被3整除。
② 什麼叫取值范圍(簡單一些)小學六年級
就是一個量范圍中的合理數。
分類:
滿射函數,其值域即為其對應域。即:對映射f的對應域中之任意y,都存在至少一個x滿足 y=f(x)。
雙射函數,既是單射的又是滿射的。也叫一一對應。雙射函數經常被用於表明集合X和Y是等勢的,即有一樣的基數。如果在兩個集合之間可以建立一個一一對應,則說這兩個集合等勢。
元素:
輸入值的集合X被稱為f的定義域;可能的輸出值的集合Y被稱為f的值域。函數的值域是指定義域中全部元素通過映射f得到的實際輸出值的集合。注意,把對應域稱作值域是不正確的,函數的值域是函數的對應域的子集。
計算機科學中,參數和返回值的數據類型分別確定了子程序的定義域和對應域。因此定義域和對應域是函數一開始就確定的強制進行約束。另一方面,值域是和實際的實現有關。
③ 小學數學數與代數包含哪幾個方面
小學數學數與代數包括四個方面:整數、小數、分數、百分數
一:整數
1、自然數
2、正數
3、負數
知識點二:小數
1、小數的意義
2、小數大小的比較
3、數的改寫與求近似數
知識點三:分數
1、分數的意義
2、分數單位
3、分數的分類
4、分數的基本性質
5、分數與除法的關系
6、約分
7、最簡分數
8、通分
9、分數大小的比較
10、分數化小數
11、小數化為分數
12、分數的基本性質與小數基本性質的關系
知識點四 :百分數
1、 求常見的百分率
2、 求一個數比另一個數多(或少)百分之幾
3、 求一個數的百分之幾是多少
4、 已知一個數的百分之幾是多少,求這個數
5、 折扣
6、 利率
(3)小學數學的數是什麼范圍的擴展閱讀
《小學數學課程標准》中關於數與代數部分的部分要求:
1、數感主要表現在:理解數的意義;能用多種方法來表示數;能在具體的情境中把握數的相對大小關系;能用數來表達和交流信息;能為解決問題而選擇適當的演算法;能估計運算的結果,並對結果的合理性作出解釋。
2、符號感主要表現在:能從具體情境中抽象出數量關系和變化規律,並用符號來表示;理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。
3、經歷從日常生活中抽象出數的過程,認識萬以 內的數、小數、簡單的 分數和常見的量。
4、"數與代數"的內容主要包括數與式、方程與不等式、函數,它們都是研究數量關系和變化規律的數學模型,可以幫助人們從數量關系的角度更准確、清晰地認識、描述和把握現實世界。