㈠ 高考數學滿分是多少分
按照目前高考制度,高考數學總分是150分。及格分為90分,優秀分為120分,優異分為140分以上。一般學生能考到120分以上,就算高分。不過,對於優秀生來說,很多都考滿分,或者考140分以上,130分以上更是多見。高考中數學要考高分,需要具備以下條件:
課本基本知識和所有例題掌握異常扎實,公式定理及其推導證明爛熟於胸。因為,高考中不僅考查基礎知識,有時直接出課本原題,或者公式定理的推導證明。
初高中數學知識掌握全面,平面幾何,代數,立體幾何,解析幾何都沒有任何知識缺陷或漏洞。
掌握各種類型題的解法和技巧,並能融會貫通,靈活遷移和聯系運用。
學生本人學習主動性強,具有自主學習和合作學習、善於思考等良好習慣。
熟悉高考數學歷年真題的命題特點和高考熱點,經過高考真題的一題多解,多題一解,多題多解等靈活高效的思維訓練,具有精準的審題能力和高效的分析解題能力。
㈡ 數學分幾大類
數學分26大類:
1、數學史
2、數理邏輯與數學基礎:演繹邏輯學(也稱符號邏輯學),證明論(也稱元數學),遞歸論 ,模型論 ,公理集合論 ,數學基礎 ,數理邏輯與數學基礎其他學科。
3、數論:初等數論,解析數論,代數數論 ,超越數論,丟番圖逼近,數的幾何,概率數論,計算數論,數論其他學科。
4、代數學:線性代數,群論,域論,李群,李代數,Kac-Moody代數,環論(包括交換環與交換代數,結合環與結合代數,非結合環與非結合代數等),模論,格論,泛代數理論,范疇論,同調代數,代數K理論,微分代數,代數編碼理論,代數學其他學科。
5、代數幾何學
6、幾何學:幾何學基礎,歐氏幾何學,非歐幾何學(包括黎曼幾何學等),球面幾何學,向量和張量分析,仿射幾何學,射影幾何學,微分幾何學,分數維幾何,計算幾何學,幾何學其他學科。
7、拓撲學:點集拓撲學,代數拓撲學,同倫論,低維拓撲學,同調論,維數論,格上拓撲學,纖維叢論,幾何拓撲學,奇點理論,微分拓撲學,拓撲學其他學科。
8、數學分析:微分學,積分學,級數論 ,數學分析其他學科。
9、非標准分析
10、函數論:實變函數論 ,單復變函數論,多復變函數論,函數逼近論 ,調和分析 ,復流形,特殊函數論,函數論其他學科。
11、常微分方程:定性理論,穩定性理論 ,解析理論 ,常微分方程其他學科。
12、偏微分方程:橢圓型偏微分方程,雙曲型偏微分方程,拋物型偏微分方程,非線性偏微分方程 ,偏微分方程其他學科。
13、動力系統:微分動力系統,拓撲動力系統,復動力系統 ,動力系統其他學科。
14、積分方
15、泛函分析:線性運算元理論,變分法,拓撲線性空間,希爾伯特空間,函數空間,巴拿赫空間 ,運算元代數,測度與積分,廣義函數論,非線性泛函分析,泛函分析其他學科。
16、計算數學:插值法與逼近論,常微分方程數值解 ,偏微分方程數值解,積分方程數值解,數值代數,連續問題離散化方法,隨機數值實驗,誤差分析,計算數學其他學科。
17、概率論:幾何概率,概率分布,極限理論,隨機過程(包括正態過程與平穩過程、點過程等) ,馬爾可夫過程,隨機分析,鞅論,應用概率論(具體應用入有關學科),概率論其他。
18、數理統計學:抽樣理論(包括抽樣分布、抽樣調查等 ),假設檢驗 ,非參數統計,方差分析 ,相關回歸分析 ,統計推斷,貝葉斯統計(包括參數估計等),試驗設計,多元分析,統計判決理論,時間序列分析,數理統計學其他學科。
19、應用統計數學:統計質量控制 ,可靠性數學 ,保險數學,統計模擬。
20、應用統計數學其他學科
21、運籌學:線性規劃,非線性規劃,動態規劃,組合最優化 ,參數規劃,整數規劃,隨機規劃 ,排隊論,對策論,也稱博弈論,庫存論,決策論,搜索論,圖論 ,統籌論,最優化,運籌學其他學科。
22、組合數學
23、模糊數學
24、量子數學
25、應用數學(具體應用入有關學科)
26、數學其他學科
㈢ 數學分為多少學科
線性代數 概率論與數理統計 微積分 統計學 運籌學 ……只學過這幾種
㈣ 數學分為哪幾類
數學可以分為:數論、代數學、代數幾何學、幾何學、拓撲學、數學分析、非標准分析、函數論、常微分方程、偏微分方程、動力系統、積分方程、泛函分析、計算數學、概率論數理統計學、應用統計數學、應用統計數學其他學科、運籌學、組合數學 、模糊數學、量子數學、應用數學等等。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」,可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
(4)數學分多少擴展閱讀
相關定理
1、李善蘭恆等式:數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式)。
2、華氏定理:數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
3、蘇氏錐面:數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。
4、熊氏無窮級:數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」。
5、陳示性類:數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」。
6、周氏坐標:數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」。
㈤ 數學多少分過
你是哪的,在我們這是可以的
㈥ 數學得了多少分
設數學的分數為x
(88*4+x)/5+8=x
x=98
答:數學考了98分。
㈦ 數學有多少分支
數學有26個分支,分別是:
1、數學史
2、數理邏輯與數學基礎
3、數論
4、代數學
5、代數幾何學
6、幾何學
7、拓撲學
8、數學分析
9、非標准分析
10、函數論
11、常微分方程
12、偏微分方程
13、動力系統
14、積分方程
15、泛函分析
16、計算數學
17、概率論
18、數理統計學
19、應用統計數學
20、應用統計數學其他學科
21、運籌學
22、組合數學
23、模糊數學
24、量子數學
25、應用數學(具體應用入有關學科)
26、數學其他學科
(7)數學分多少擴展閱讀:
數學各個領域
基礎與哲學
為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。數學邏輯專注於將數學置在一堅固的公理架構上,並研究此一架構的結果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。
現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性,千禧年大獎難題中的P/NP問題就是理論計算機科學中的著名問題。
離散數學
離散數學是指對理論計算機科學最有用處的數學領域之總稱,這包含有可計算理論、計算復雜性理論及資訊理論。可計算理論檢驗電腦的不同理論模型之極限,這包含現知最有力的模型-圖靈機。
復雜性理論研究可以由電腦做為較易處理的程度;有些問題即使理論是可以以電腦解出來,但卻因為會花費太多的時間或空間而使得其解答仍然不為實際上可行的,盡管電腦硬體的快速進步。
最後,資訊理論專注在可以儲存在特定媒介內的數據總量,且因此有壓縮及熵等概念。做為一相對較新的領域,離散數學有許多基本的未解問題。其中最有名的為P/NP問題-千禧年大獎難題之一。一般相信此問題的解答是否定的。
應用數學
應用數學思考將抽象的數學工具運用在解答科學、工商業及其他領域上之現實問題。應用數學中的一重要領域為統計學,它利用概率論為其工具並允許對含有機會成分的現象進行描述、分析與預測。
大部份的實驗、調查及觀察研究需要統計對其數據的分析。(許多的統計學家並不認為他們是數學家,而比較覺得是合作團體的一份子。)數值分析研究有什麼計算方法,可以有效地解決那些人力所限而算不出的數學問題;它亦包含了對計算中舍入誤差或其他來源的誤差之研究。
㈧ 考研數學一般能考多少分
考研數學總分150分,按不同的學科,有數學一、數學二和數學三三種試題,難度依次遞減,一般好的學校要求最低分達到85分。
考研數學的小技巧:
1、考研數學要復習好,首要要做的就是按照大綱對基礎的要求,准確把握基本概念、方法和定量。數學是一門演繹的科學,靠僥幸押題是行不通的。
2、考生失分的一個重要原因就是對基本概念、定理理解不準確,數學中最基本的方法掌握不好,給解題帶來思維上的困難。所以考研數學要想得高分,先要研究大綱。
考研的流程
1、選定報考單位、報考專業和初試科目。這個不是規定的程序,但是是最重要的前提工作,只有這一項確定了,其他准備工作才有明確方向。
2、網上報名與繳費。網上報名時間為10月中下旬。
3、現場確認。根據報考點的公告,攜帶本人有效證件和規定材料到指定地點進行現場確認,並採集個人電子照片。
4、列印准考證。按照報考點要求在規定時間內列印准考證。
5、初試。初試一般安排在12月份最後一個周末進行。
6、復試、體檢、資格復審。復試一般為次年的3-4月份。如果沒有滿足初試分數線,則需要自己關注調劑信息進行調劑。
7、錄取與通知書發放。錄取結果在復試後一周內會公示,錄取通知書一般在次年6月份發放。