㈠ 數學素養包括哪些
數學素養包括:
1、 在討論問題時,習慣於強調定義(界定概念),強調問題存在的條件;
2、 在觀察問題時,習慣於抓住其中的(函數)關系,在微觀(局部)認識基礎上進一步做出多因素的全局性(全空間)考慮;
3、 在認識問題時,習慣於將已有的嚴格的數學概念如對偶、相關、隨機、泛涵、非線性、周期性、混沌等等概念廣義化,用於認識現實中的問題。比如可以看出價格是商品的對偶,效益是公司的泛涵等等。
(1)數學素養不包括什麼擴展閱讀:
數學素養屬於認識論和方法論的綜合性思維形式,它具有概念化、抽象化、模式化的認識特徵。具有數學素養的人善於把數學中的概念結論和處理方法推廣應用於認識一切客觀事物,具有這樣的哲學高度和認識特徵。具體說,一個具有「數學素養」的人在他的認識世界和改造世界的活動中,常常表現出三個特點。
更通俗地說,數學素養就是數學家的一種職業習慣,「三句話不離本行」,我們希望把我們的專業搞得更好,更精密更嚴格,有這種優秀的職業習慣當然是好事。人的所有修養,有意識的修養比無意識地、僅憑自然增長地修養來得快得多。只要有這樣強烈的要求、願望和意識,堅持下去人人都可以形成較高的數學素養。
㈡ 小學數學素養包括哪些
1、培養數學意識,形成良好數感。
數學意識的培養有利於數學思維的發展,良好數感則有利於形成科學的直覺。個人的數學意識和數感一方面反映了他的數學態度,另一方面也反映了他的數學素養水平。
2、加強數學思維、方法的訓練,形成學生數學探究能力。
數學探究能力是數學素養最核心的成份和最本質的特徵,數學探究能力的提高是通過數學思維方法的訓練來完成的。
3、培養估算能力,形成科學的直覺。
估算是對事物的整體把握,是對事物數量的直覺判斷。在現實生活中一個人的估算能力有著廣泛的作用。如果我們在小學數學教學中,注重培養學生的估算意識,積極發展學生的估算能力,這將有助於學生對數學概念的理解,有助於數學方法在實際生活中的運用,有助於學生對日常數量關系的靈活處理。
4、注重數學實踐活動的開展。
數學實踐活動的開展,對於學生能力的培養是十分有益的。教師要想培養學生實際的本領,必須帶領學生參與豐富多彩的數學實踐活動,使學生在實踐中長知識、長才幹,學會識別、學會適應生活中的數學問題。
(2)數學素養不包括什麼擴展閱讀:
面對學科核心素養,基於課程功能與價值的以社會為中心、以學生為中心和以學科為中心的主題教學探索;基於學科內容整合的「單學科—主題」「多學科—主題」和「跨學科—主題」的主題教學探索,等等,給我們「彷彿若有光」的期待。
我們願意將主題教學視為情境教學。但如果按照「真正進入到真實情境」的復雜情境的要求,也許其路漫漫。學科核心素養與復雜情境的挑戰,何止是教學環節,包括政府的「管」、學校的「辦」、教師的「教」、學生的「學」,以及專業機構的「評」和社區社會的「議」各個方面。
借用也是沿用懷德海的話說:「這是教育的金科玉律,也是一條很難遵守的規律。」
㈢ 數學十大素養包括哪些
中學數學是重要的基礎學科,在推進素質教育的過程中肩負著歷史重任,對培養和發展中學生素質意義重大。在數學教學中,如何培養和提高中學生數學素質,適應社會主義現代化建設的需要,是廣大數學教育工作者面臨的重大課題。
張奠宙教授《數學素質教育設計》(草案)中的一個界定:即從數學知識觀念、創造能力、思維品質、科學語言等四個層次進行分析研究;朱成傑教授《數學思想方法教學研究導論》指出數學素質包括:思想政治、科學文化、心理健康和勞動技能素質等四個方面。
我國傳統提法:基本運算能力、邏輯思維能力、 空間想像能力、應用數學知識分析解決實際問題能力,有人建議應增加一項「建立數學模型能力」。
美國數學課程標准認為, 數學教育的目標應是具有以下五點數學素質:
①懂得數學價值;
②對自己的數學能力有信心;
③有解決數學問題的能力;
④學會數學交流;
⑤掌握數學思想方法。
更通俗地說,數學素養就是數學家的一種職業習慣,「三句話不離本行」,我們希望把我們的專業搞得更好,更精密更嚴格,有這種優秀的職業習慣當然是好事。
人的所有修養,有意識的修養比無意識地、僅憑自然增長地修養來得快得多。只要有這樣強烈的要求、願望和意識,堅持下去人人都可以形成較高的數學素養。
(3)數學素養不包括什麼擴展閱讀:
下面舉一個例子,看看數學素養在其中如何發揮作用。18世紀德國哥德堡有一條河,河中有兩個島,兩岸於兩島間架有七座橋。問題是:一個人怎樣走才可以不重復的走遍七座橋而回到原地。
這個問題好像與數學關系不大,它是幾何問題,但不是關於長度、角度的歐氏幾何。很多人都失敗了,歐拉以敏銳的數學家眼光,猜想這個問題可能無解(這是合情推理)。
然後他以高度的抽象能力,把問題變成了一個「一筆畫」問題,建模如下:見圖右,能否從一個點出發不離開紙面地畫出所有的連線,使筆仍回到原來出發的地方。
以下開始演繹分析,一筆畫的要求使得圖形有這樣的特徵:除起點與終點外,一筆畫問題中線路的交岔點處,有一條線進就一定有一條線出,故在交岔點處匯合的曲線必為偶數條。
七橋問題中,有四個交叉點處都交匯了奇數條曲線,故此問題不可解。歐拉還進一步證明了:一個連通的無向圖,具有通過這個圖中的每一條邊一次且僅一次的路,當且僅當它的奇數次頂點的個數為0或為2。這是他為數學的一個新分枝――圖論所作的奠基性工作,後人稱此為歐拉定理。
㈣ 數學素養的基本內涵是什麼
數學素質的基本內涵概括為以下幾個方面:
1.精確定量思維方式。
2.數學抽象概括能力。
3.邏輯思維能力。
4.幾何直觀能力。
5.數學語言表達能力。
6.數學應用意識.
(4)數學素養不包括什麼擴展閱讀:
一、數學素養
指人用數學觀點、數學思維方式和數學方法觀察、分析、解決問題的能力及其傾向性,包括數學意識、數學行為、數學思維習慣、興趣、可能性、品質等等。數學是一門知識結構有序、邏輯性很強的學科,「是人們對客觀世界進行定性把握和定量刻畫,逐步抽象概括,形成方法和理論,並進行廣泛應用的過程」。數學知識的學習過程,必須遵循數學學科特性,通過不斷地分析、綜合、運算、判斷推理來完成。因此,整個學習過程就是一個數學知識的積累、方法的掌握、運用和內化的過程,同時又是數學思維品質不斷培養強化的過程。顯然數學的嚴密有序性、數學知識的內在邏輯性、數學方法的多樣性是我們提高數學素養的極其重要的因素。
二、數學素質的基本內涵
數學教育心理學中把數學素質的基本內涵概括為以下幾個方面:
1.精確定量思維方式,通俗來說指的是靠數學的精確計算來培養,可以培養學生按規則辦事的素養和習慣,心算和估算可以培養學生全面把握問題情境、洞察事物本質的能力,以及對數據特點的准確理解、對演算法的合理選擇、對結果合理性的正確判斷等能力。
2.數學抽象概括能力,使學生面對錯綜復雜的事物,能把注意力集中在對研究問題起關鍵作用的特徵上,並善於用恰當的方法表示這種特徵,從而方便地進行深入地思考,方便地與他人進行交流,數學抽象概括及符號表示是對學生思維方式的訓練,是對學生進行簡捷、嚴謹、有序地表達思想的訓練,這是其他學科無法替代的。
3.邏輯思維能力。
4.幾何直觀能力。
5.數學語言表達能力,使用數學語言可以使人在表達思想時做到清晰、准確、簡潔,在處理問題時能夠將問題中各種因素之間的復雜關系表述得條理清楚,結構分明。
6.數學應用意識。
㈤ 小學生的基本數學素養包括哪些
小學生的數學素養包括數感、符號意識、空間觀念、統計觀念、數學應用意識五種數學意識,數學思維、數學理解、數學交流、解決問題四種數學能力以及數學價值觀的發展。
數學素養是一種綜合素質,它主要表現在觀念、能力、語言、思維、心理等方面。包括數學意識、解決問題、數學推理、信息交流、數學心理素質五個部分。
拓展資料:
何謂數學素養?數學素養是學生以先天遺傳因素為基體,在從事數學學習與應用活動的過程中,通過主體自身的不斷認識和實踐的影響下,使數學文化知識和數學能力在主體發展中內化,逐漸形成和發展起來的「數學化」思維意識與「數學化」地觀察世界、處理和解決問題的能力。
通俗說,一個人的數學素養好,與說一個人有數學頭腦的意思差不多,歸根到底是指他從數學的角度來思考問題。一個具備數學素養的人,不僅僅表現在數學考試中能解題,還應在日常生活中,時時處處表現出是個學過數學的人,它是在長期的數學學習中逐步內化而成的。
小學生應具備的數學素養:
1、從觀念層面考慮,應具備自覺的定量、定量化數學意識。
數學意識是指用數學的觀點和態度去觀察解釋和表示事物的數量關系、空間形式和數據信息,以形成量化意識和良好數感。
定量化數學意識:指人們從實際中提煉數學問題,抽象化為數學模型,用數學計算求出此模型的解或近似解,然後回到現實中進行檢驗,必要時修改模型使之更切合實際,最後編制解題的軟體包,以便得到更廣泛的方便的應用。
2、從能力層面考慮,應具備問題解決的數學素養。數學源於於現實,寓於現實,並用於現實。數學教學的大眾化目的,在於使學生獲得解決他們在日常生活和工作中遇到的數學問題能力和可以用數學解決的其它問題。簡言之,就是運用「數學化」的思維習慣去描述、分析、解決問題。
3、從語言層面考慮,應具備運用數學語言進行信息交流的數學素質。數學既是科學的語言,也是日常生活語言。數學語言是以精確、簡約、抽象為特點。它可以使人在表達思想時做到清晰、准確、簡潔,在處理問題時能將問題中的復雜關系表述的條理清楚、結構分明。隨著新技術應用的日益廣泛,利用數學進行交流的需要也日益廣泛。在小學數學教學中利用交流這一手段有助於有意義的數學學習,如果在數學課堂中充滿豐富的交流,可以獲得雙重效益:一是那些積極參加討論的學生,在不同的爭議中將對數學獲得更好的理解;二是如果在數學課堂上給學生聽、說、讀、寫數學的機會,他們將學會數學的交流。
4、從思維層面考慮,應具備數學推理能力。
《數學課程標准》中指出:「推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。」根據標准要求,掌握比較完善的推理能力是兒童智力發展的重要環節和主要標志,數學教學中應注意培養和發展兒童的推理能力。結合教學實際,我們認為小學數學中常用的推理有歸納推理、演繹推理和類比推理。
㈥ 數學素養包括哪些
數學核心素養包含:數學抽象、邏輯推理、數學建模、數學運算、直觀想像、數據分析等六個方面。
數學學科核心素養的培養,要通過學科教學和綜合實踐活動課程來具體實施。
第一、數學學科教學活動是數學學科素養培養的主要途徑。數學核心素養的六個方面在小學、初中、高中、本專科、研究生教育等五個階段的內涵。
學科價值和教育價值、表現等方面的要求各不相同,要仔細推敲,准確把握,切實貫穿到學科教學活動中去。
第二、研究性學習綜合實踐活動課程是數學學科素養培養的重要途徑。由於研究性學習屬於綜合課程,所以必然包含數學學科的相關知識內容。
又由於其實踐活動課程的特點,對數學建模、數學抽象、數學推理等方面都有較高的要求。
第三、青少年科技創新活動是數學學科素養培養的很好途徑。全國青少年科技創新大賽是一項具有20多年歷史的全國性青少年科技創新成果和科學探究項目的綜合性科技競賽。
是面向在校中小學生開展的具有示範性和導向性的科技教育活動之一,是目前我國中小學各類科技活動優秀成果集中展示的一種形式。
(6)數學素養不包括什麼擴展閱讀:
面對學科核心素養,基於課程功能與價值的以社會為中心、以學生為中心和以學科為中心的主題教學探索;基於學科內容整合的「單學科—主題」「多學科—主題」和「跨學科—主題」的主題教學探索,等等,給我們「彷彿若有光」的期待。
我們願意將主題教學視為情境教學。但如果按照「真正進入到真實情境」的復雜情境的要求,也許其路漫漫。學科核心素養與復雜情境的挑戰,何止是教學環節,包括政府的「管」、學校的「辦」、教師的「教」、學生的「學」,以及專業機構的「評」和社區社會的「議」各個方面。
借用也是沿用懷德海的話說:「這是教育的金科玉律,也是一條很難遵守的規律。」