① 小學數學的應用題類型
小學數學的應用題類型匯總
應用題是指將所學知識應用到實際生活實踐的題目,在數學上,應用題分兩大類:一個是數學應用。另一個是實際應用。我整理的小學數學的應用題類型,供參考!
一、一般應用題
一般應用題沒有固定的結構,也沒有解題規律可循,完全要依賴分析題目的數量關系找出解題的線索。
要點:從條件入手?從問題入?
從條件入手分析時,要隨時注意題目的問題
從問題入手分析時,要隨時注意題目的已知條件。
例題如下:
某五金廠一車間要生產1100個零件,已經生產了5天,平均每天生產130個。剩下的如果平均每天生產150個,還需幾天完成?
思路分析:
已知「已經生產了5天,平均每天生產130個」,就可以求出已經生產的個數。
已知「要生產1100個機器零件」和已經生產的個數,已知「剩下的平均每天生產150個」,就可以求出還需幾天完成。
二、典型應用題
用兩步或兩步以上運算解答的應用題中,有的題目由於具有特殊的結構,因而可以用特定的步驟和方法來解答,這樣的應用題通常稱為典型應用題。
(一)求平均數應用題
解答求平均數問題的規律是:
總數量÷對應總份數=平均數
註:在這類應用題中,我們要抓住的是對應,可根據總數量來劃分成不同的子數量,再一一地根據子數量找出各自的份數,最終得出對應關系。
例題一如下:
一台碾米機,上午4小時碾米1360千克,下午3小時碾米1096千克,這天平均每小時碾米約多少千克?
思路分析:
要求這天平均每小時碾米約多少千克,需解決以下三個問題:
1、這一天總共碾了多少米?(一天包括上午、下午)。
2、這一天總共工作了多少小時?(上午的4小時,下午的3小時)。
3、這一天的總數量是多少?這一天的總份數是多少?(從而找出了對應關系,問題也就得到了解決。)
(二)歸一問題
歸一問題的題目結構是:
題目的前部分是已知條件,是一組相關聯的量;
題目的後半部分是問題,也是一組相關聯的量,其中有一個量是未知的。
解題規律是,先求出單一的量,然後再根據問題,或求單一量的幾倍是多少,或求有幾個單一量。
例題如下:
6台拖拉機4小時耕地300畝,照這樣計數,8台拖拉機7小時可耕地多少畝?
思路分析:
先求出單一量,即1台拖拉機1小時耕地的畝數,再求8台拖拉機7小時耕地的畝數。
(三)相遇問題
指兩運動物體從兩地以不同的速度作相向運動。
相遇問題的基本關系是:
1、相遇時間=相隔距離(兩個物體運動時)÷速度和。
例題如下:兩地相距500米,小紅和小明同時從兩地相向而行,小紅每分鍾行60米,小明每分鍾行65米,幾分鍾相遇?
2、相隔距離(兩物體運動時)=速度之和×相遇時間
例題如下:一列客車和一列貨車分別從甲乙兩地同時相對開出,10小時後在途中相遇。已知貨車平均每小時行45千米,客車每小時的速度比貨車快20﹪,求甲乙相距多少千米?
3、甲速=相隔距離(兩個物體運動時)÷相遇時間-乙速
例題如下:一列貨車和一列客車同時從相距648千米的兩地相對開出,4.5小時相遇。客車每小時行80千米,貨車每小時行多少千米?
相遇問題可以有不少變化。
如兩個物體從兩地相向而行,但不同時出發;
或者其中一個物體中途停頓了一下;
或兩個運動的物體相遇後又各自繼續走了一段距離等,都要結合具體情況進行分析。
另:相遇問題可以引申為工程問題:即工效和×合做時間=工作總量
三、分數和百分數應用題
分數和百分數的基本應用題有三種,下面分別談一談每種應用題的特徵和解題的規律。
(一)求一個數是另一個數的百分之幾
這類問題的結構特徵是,已知兩個數量,所求問題是這兩個量間的百分率。
求一個數是另一個數的百分之幾與求一個數是另一個數的幾倍或幾分之幾的實質是一樣的,只不過計算結果用百分數表示罷了,所以求一個數是另一數的百分之幾時,要用除法計算。
解題的一般規律是:設a、b是兩個數,當求a是b的百分之幾時,列式是a÷b。解答這類應用題時,關鍵是理解問題的含意。
例題如下:
養豬專業戶李阿姨去年養豬350頭,今年比去年多養豬60頭,今年比去年多養豬百分之幾?
思路分析:
問題的含義是:今年比去年多養豬的頭數是去年養豬頭數的百分之幾。所以應用今年比去年多養豬的頭數去÷去年養豬的頭數,然後把所得的結果轉化成百分數。
(二)求一個數的幾分之幾或百分之幾
求一個數的幾分之幾或百分之幾是多少,都用乘法計算。
解答這類問題時,要從反映兩個數的倍數關系的那個已知條件入手分析,先確定單位「1」,然後確定求單位「1」的幾分之幾或百分之幾。
(三)已知一個數的幾分之幾或百分之幾是多少,求這個數
這類應用題可以用方程來解,也可以用算術法來解。
用算術方法解時,要用除法計算。
解答這類應用題時,也要反映兩個數的倍數關系的已知條件入手分析:
先確定單位「1」,再確定單位「1」的幾分之幾或百分之幾是多少。
一些稍難的應用題,可以畫圖幫助分析數量關系。
(四)工程問題
工程問題是研究工作效率、工作時間和工作總量的問題。
這類題目的特點是:
工作總量沒有給出實際數量,把它看做「1」,工作效率用來表示,所求問題大多是合作時間。
例題如下:
一件工程,甲工程隊修建需要8天,乙工程隊修建需要12天,兩隊合修4天後,剩下的任務,有乙工程隊單獨修,還需幾天?
思路分析:
把一件工程的工作量看作「1」,則甲的工作效率是1/8,乙的工作效率是1/12。
已知兩隊合修了4天,就可求出合修的工作量,進而也就能求出剩下的工作量。
用剩下的工作量除以乙的工作效率,就是還需要幾天完成。
四、比和比例應用題
比和比例應用題是小學數學應用題的重要組成部分。在小學中,比的應用題包括:比例尺應用題和按比例分配應用題,正、反比例應用題。
(一)比例尺應用題
這種應用題是研究圖上距離、實際距離和比例尺三者之間的關系的。
解答這類應用題時,最主要的是要清楚比例尺的意義,即:
圖上距離÷實際距離=比例尺
根據這個關系式,已知三者之間的任意兩個量,就可以求出第三個未知的.量。
例題如下:
在比例尺是1:3000000的地圖上,量得A城到B城的距離是8厘米,A城到B城的實際距離是多少千米?
思路分析:
把比例尺寫成分數的形式,把實際距離設為x,代入比例尺的關系式就可解答了。所設未知數的計量單位名稱要與已知的計量單位名稱相同。
(二)按比例分配應用題
這類應用題的特點是:把一個數量按照一定的比分成兩部分或幾部分,求各部分的數量是多少。
這是學生在小學階段唯一接觸到的不平均分問題。
這類應用題的解題規律是:
先求出各部分的份數和,在確定各部分量占總數量的幾分之幾,最後根據求一個數的幾分之幾是多少,用乘法計算,求出各部分的數量。
按比例分配也可以用歸一法來解。
例題如下:
一種農葯溶液是用葯粉加水配製而成的,葯粉和水的重量比是1:100。2500千克水需要葯粉多少千克?5.5千克葯粉需加水多少千克?
思路分析:
已知葯和水的份數,就可以知道葯和水的總份數之和,也就可以知道葯和水各自占總份數的幾分之幾,知道了分率,相應地也就可以求出各自相對量。
(三)正、反比例應用題
解答這類應用題,關鍵是判斷題目中的兩種相關聯的量是成正比里的量,還是成反比例的量。
如果用字母x、y表示兩種相關聯的量,用K表示比值(一定),兩種相向關聯的量成正比例時,用下面的式子來表示:
kx=y(一定)。
如果兩種相關聯的量成反比例時,可用下面的式子來表示:
×y=K(一定)。
例題如下:
六一玩具廠要生產2080套兒童玩具。前6天生產了960套,照這樣計算,完成全部任務共需要多少天?
思路分析:
因為工作總量÷工作時間=工作效率,已知工作效率一定,所以工作總量與工作時間成正比例。
;② 小學數學應用題可分為幾類分別是哪些請詳細說明
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
③ 小學數學應用題的定義是什麼
在數學上,應用題分兩大類:一個是數學應用.另一個是實際應用.
數學應用就是指單獨的數量關系,構成的題目,沒有涉及到真正實量的存在及關系.實際應用也就是有關於數學與生活題目.
圖解分析法這實際是一種模擬法,具有很強的直觀性和針對性,數學教學中運用得非常普遍.如工程問題、速度問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之.(例略)
④ 小學數學應用題分類及題
典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
⑤ 什麼是應用題
應用題是用語言或文字敘述有關事實,反映某種數量關系,並求解未知數量的題目。每個應用題都包括已知條件和所求問題。
中國的應用題通常要求敘述滿足三個要求:無矛盾性,即條件之間、條件與問題之間不能相互矛盾;完備性,即條件必須充分,足以保證從條件求出未知量的數值;獨立性, 即已知的幾個條件不能相互推出。
小學數學應用題通常分為兩類:只用加、減、乘、除一步運算進行解答的稱簡單應用題;需用兩步或兩步以上運算進行解答的稱復合應用題。
(5)什麼叫做小學數學應用題擴展閱讀:
應用題的分析方法:
1、圖解分析法
這實際是一種模擬法,具有很強的直觀性和針對性,數學教學中運用得非常普遍。如工程問題、行程問題、調配問題等,多採用畫圖進行分析,通過圖解,幫助學生理解題意,從而根據題目內容,設出未知數,列出方程解之。
2、親身體驗法
如講逆水行船與順水行船問題。有很多學生都沒有坐過船,對順水行船、逆水行船、水流的速度,學生難以弄清。為了讓學生明白,舉騎自行車為例(因為大多數學生會騎自行車),學生有親身體驗,順風騎車覺得很輕松,逆風騎車覺得很困難,這是風速的影響。
並同時講清,行船與騎車是一回事,所產生影響的不同因素一個是水流速,一個是風速。這樣講,學生就好理解。
3、直觀分析法
如濃度問題,首先要講清百分濃度的含義,同時講清百分濃度的計算方法。其次重要的是上課前要准備幾個杯子,稱好一定重量的水,和好幾小包鹽進教室,以便講例題用。
⑥ 如何做小學數學應用題
應用題教學是小學數學教學的重要組成部分,他是培養學生綜合運用所學知識分析問題、解決問題的能力,是發展學生數學思維的最重要途徑.。因此,在教學中必須突出多讀、多思。讓學生在多讀,多思中發現問題、探索問題、掌握規律,提高解答應用題的能力。
下面我談談孩子們應該如何讀題?
(一)運用直觀媒體,理解應用題的題意,從當前教學中反映的問題來看,應注意讀題和直觀媒體緊密結合,依題解題,讀題要加強。不能一字一字地讀,也不要只讀一遍。要讀出停頓。如按標點符號停頓;按句子成分停頓;按內容的邏輯停頓。可多讀幾遍,在讀的過程中使用直觀媒體,幫助學生理解題內容,操作時可把一句句話和媒體正確對應,讀時可以圍繞難點,重點詞語,勾畫內容之間的聯系。 (二) 讀題後的思考
第一,思已知 就是讓學生在感知已知條件的基礎上,展開思維,「你聯想到了什麼?」它是學生讀懂題意,找到已知條件與問題聯系的途徑之一。例如:一個圓柱的側面展開是一個正方形,它的邊長是18.84厘米,這個圓柱的底面半徑是多少厘米?學生在讀完「一個圓柱的側面展開是一個正方形」時,就會聯想到它的底面周長等於高,也就是底面周長和高都等於這個正方形的邊長,從而實現了已知條件與問題的緊密聯系,有助於問題的解決。
第二,思問題 就是根據問題,展開思維,找到問題與已知條件的聯系。它是培養學生分析問題能力的有效方法之一。在教學中,我們可以從問題入手分析,學生根據自己已有的數量關系和生活經驗,找到要解決這個問題需要知道哪兩個條件,如果兩個條件都是未知的,下一步該怎麼做?這樣一步一步地分析,就能找到要求的問題。例如:甲乙兩車分別從相距420千米兩地同時出發,相向而行,經過6小時相遇,已知甲車每小時行40千米,乙車每小時行多少千米?要求乙車的速度,需要知道甲乙兩車的速度和與甲車的速度(或需要知道乙車行的路程和所行時間)。速度和是未知的,甲車的速度是已知的,因此要先求出速度和;而要求速度和?就要知道總路程和相遇時間,這兩者都是已知的,問題就解決了。 (三) 解題後在思考
第一,思多解 思多解不僅可以鍛煉學生的發散性思維,創新思維,而且可以培養學生綜合運用數學知識解決問題的能力。在教學中,不少的應用題客觀上存在著多種解法,我們應啟發學生一題多思,一題多解,在多解中比較各種解法的優點和缺點,選擇最佳解法。從而達到提高學生解題能力,培養學生良好思維品質的目的。
第二,思變通 應用題是千變萬化的,多練只會苦了學生,累了自己,精練才會事半功倍。「一題多變」就是精練的好方法之一,它不僅可以開闊學生的眼界,拓展學生的思維,提高學生的應變能力,而且可以防止學生思維的定勢。教師在設計作業時,將某一應用題的已知條件或問題變一變,讓學生對比練習,提高遷移能力。
第三,思規律 解題後,要啟發學生思考解題思路,不但要學生知道該怎麼做,而且還要知道為什麼這樣做,認真總結規律,以達到舉一反三的目的,這樣有利於強化知識的理解和運用,提高學生解答應用題的能力。
如何教好小學數學應用題
應用題的教學是小學數學教學中的一個難點,解答應用題的過程,其實就是分析、推導、綜合數量關系,由已知求出未知的過程。應用題的解答不僅要綜合運用小學數學中的概念、性質、意義、法則、公式等基礎知識,還要具有分析、判斷、推理、綜合等思維能力。所以,應用題教學不但可以鞏固知識,而且有利於培養學生初步的邏輯思維能力。那麼,如何進行應用題教學呢?為此,筆者經過不斷探索與實踐,精心設計了應用題七環教學法,收到了可觀的教學效果。
應用題七環教學法是在心理學理論和《數學課程標准》的指導下,根據應用題的特點,從應用題生活化的角度,針對應用題在小學中的地位,對應用題給師生帶來的困惑進行不斷的探索與研究得出的。它以學生為主體,以加強思維訓練、發展學生思維為重點,著眼於提高學生靈活解決實際問題的能力。其基本環節是:導→讀→思→說→記→找→研。現分述導
導,即導入新課,是老師有機連接各個環節的橋梁。其目的是為學生探究新知識指明方向,激發學生學習的積極性,把學生的注意力集中於新知識上,使學生全身心地投入學習。導的水平如何,將直接影響教學的成敗。因此,對這一環節的教學,教師千萬不可小覷,要引起高度的重視,不僅要讓導的內容與新知識緊密聯系在一起,使其有利於學生進行遷移類推,而且要密切聯系學生實際和現實生活,使學生感到既容易學,又有趣;
既有用,又有價值。為此,教學中,教師要注意導的方式,或者從學生的實際生活進行啟發,或者充分使用學具、教具進行設疑,或者運用課件,充分發揮多媒體的優勢吸引學生,或者環環相扣,以舊引新。總之,不論運用什麼方式,只要能達到導的目的,導得自然,一般來說,都是可取而有效的導入方式。 2、讀
讀,指讀題目,是應用題教學的重要環節,是學生自己感知信息數據的過程。讀,看起來是非常簡單的事,其實,要把應用題讀通、讀透,還是比較困難的。有的學生之所以做錯,其實主要原因之一就是由於讀題時走馬觀花,沒有讀懂。「書讀百遍,其義自見。」應用題也不例外。甚至可以這么說:「與其讓學生抄題目,不如讓學生多讀題目。」這當中的道理,就像讓學生抄不認識的字一樣,不論抄多少遍,學生還是同樣不認識、不理解。
讀,要講究一定的方式。在小學,大多數的學生讀題時都不注意停頓,語感非常差,使得數學意識低下,因而理解不透題意。教學中教師要給學生以讀的指導:可以朗讀,可以默讀;可以個人讀,也可以分組讀;還可以全班齊讀,形式不拘一格。此外,還要注意讀的語速。通常情況下,語速以稍慢為佳,以能准確感知信息數據及問題為標准。因此 ,讀的時候一定要全面、仔細,既不加字也不減字,對於較深的題目,甚至要咬文嚼字。這樣不僅能提高學生的數學意識,而且也使學生的感知能力得到了培養,同時也提高了學生捕捉信息數據的能力,為學生理解題意奠定了初步的基石。 3、思
思,指學生讀題後,思考題目中的已知條件和問題該如何表述,該把哪個量看作單位「1」,如何用線段圖描述題目,題目中有什麼樣的數量關系,可以用什麼方法來解答等,是培養學生思維能力的中心環節。學生思得如何,主要是看教師是否根據學生的經歷和思維水平,合理而充分利用可用的教學資源,使學生思維現實化。只要是上數學的老師,都很清楚地知道,一些學生,尤其是學困生,在掌握數學知識時,往往感到困難重重,其中重要的原因就是他們在解題過程中缺乏思維活動的自覺性與周密性。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。不但要留給學生充分思考的餘地,使學生主動而積極地產生遐想,引發思維的火花,而且要關注每一個學生的思維活動,為學生提供獨立思考的機會,對學生負責。切忌以教師的說講來代替學生的思,力求「實現不同的人在數學上都得到不同程度的發展」。
4、說
說,指學生用語言對自己的思考進行表達,屬於口頭動腦,是對題目的再理解,是最積極的思維表現。「人的思維,尤其是抽象思維,與言語密不可分。」「言語使思維更凝縮。」「語言是思維的工具,人們利用它進行各種思維活動。」可見,語言能促進思維的發展。說也是教師了解學生思維水平的重要手段。教師評價學生愛動腦筋,勤於思考,智商高等,主要就是從學生平時說的積極性這一角度來進行評價的。所以在教學過程中,教師要重視說的訓練,尤其是學困生,更應該激發他們說的慾望,使他們不僅僅是想說,而且是要說;給他們一個說的舞台,讓他們充分表現自己,體驗到成功的快樂。因此,說的時候應盡可能採用個人說的方式進行,以便更好地了解學生。此外,還要要重視說的依據,也就是根據什麼來說的。只有把依據弄得一清二楚,學生才能明白應用題是如何體現基礎知識點的,才能判斷自己思的結果是否正確。這樣不僅能讓學生更好地掌握和運用基礎知識,加深對應用題的理解,學會思的方法,而且能使學生正確認識自己,建立自信。 5、記
記,指將學生說的內容簡單明了地寫下來。就條件和問題來說,記的實質是對原題進行刪節、組裝、製作的過程,是對原題的一種精加工。就整個這一環節來說,記的目的是變復雜為簡單,加深記憶,強化理解,以便於學生觀察、分析和綜合運用。常言道:好記性不如爛筆頭。學生通過「讀」「思」「說」的訓練後,得到的材料往往是零亂的,因而運用時常常丟三落四。在現實生活中,應用題也並非要像書上那樣詳細地寫出來,而只需要進行簡單地記載即可。記,還是學生概括能力的表現之一。通過觀察記的內容是否完整簡潔,可以看出學生提練語言的水平。因此,教師有必要培養學生記的能力,尤其是較復雜的應用題,記就更有必要了。記,最好在草稿本上進行,當然,如果覺得有必要,也可以在作業本上進行,但一定要注意題目中具有隱蔽性的那種條件,記的時候應當把預設部分寫出來。
例如:「一個兒童體內所含的水分有28千克,占體重的4/5。這個兒童的體重是多少千克?」在這道題中,「占體重的4/5」是一個預設條件,應該把預設的部分「水分」補出來,記為「水分佔體重的4/5」只有這樣,才能為學生掃清第一道障礙。 6、找
找,指學生根據已知條件和問題,找出題目的突破口和單位「1」等,進而找出題目中
的數量關系(等量關系),屬於分析的過程。
突破口一般是一個比較難理解的句子,是學生理解題的攔路虎,通常是帶比、分數或幾倍等的語句。教師應當設法使學生找出這種句子進行理解。單位「1」是用來衡量的量,一般是緊接分數或幾倍前的那個量;有比時,通常是相比的幾個合起來的總量;或者就是題目中的總路程、總工作量等。總的說來,和誰進行比較,誰就是單位「1」。單位「1」是學生解答應用題的基礎之一。學生是否找准單位「1」,常常影響解題的對錯。因此,教學中,教師要要引導學生弄清用來比較的量,教給學生識別比較量的方法,以便找出單位「1」的量。值得注意的是有的題目中存在著兩個甚至三個單位「1」,解題時要注意單位「1」的統一。數量關系是應用題的靈魂,是學生解答應用題的前提和根本,也是學生解答應用題最大的困難。數學教學不僅要使學生了解人類關於數學方面的文化遺產,學到一定的數學知識,還要使學生學會用知識來認識事物,解決實際問題。因此,教師不僅要使學生能獲取數學基礎知識,而且要重視培養學生的數學意識和從具體題目中找數量關系的能力。只有找到正確無誤的數量關系,才能根據數量關系進行正確的解答。
找數量關系的方法有三種: ①對已知條件和問題逐一找; ②對已知條件和問題綜合找;
③明確單位「1」,畫線段圖找。畫線段圖時,一般是先任意畫一條線段來表示單位「1」的量,然後確定應該分的段數……單位「1」的量畫好了,再畫其他的量。
例如:「一條褲子的價格是75元,是一件上衣的2/3。一件上衣多少元?」在這道題中,「是一件上衣的2/3」是一個預設條件,是題目的突破口,應注意理解;應該把「上衣」看作單位「1」。學生這樣理解後,自然能找出「褲子單價=上衣單價×2/3」這一數量關系,或者畫出下面的線段圖,找出數量關系。 7、研
研,指學生根據信息數據,利用找到的基本數量關系及某一條件或問題,研究出其他的數量關系,也就是從不同的角度進行思考,靈活運用後學知識,嘗試多種多樣化的解題方法,是解題思維的拓展,能培養學生思維的靈活性。其具體做法可以是利用加減乘除各部分間的關系對數量關系進行變式,也可以是對題目中能進行轉換說法的條件(多數是
帶幾倍分數或比的條件)進行換說法,也就是運用多種方法表達所學知識,)3找出新的數量關系進行解答。
例如:「一個農場計劃在100公頃的地里播種大豆和玉米。播種面積的比是3:2。兩種作物各播種多少公頃?」本題中有一個明顯的數量關系:「大豆面積 玉米面積 = 100 」利用加法各部分間的關系,可以得到兩個數量關系:「大豆面積 = 100 - 玉米面積」和「玉米面積 = 100 - 大豆面積」。題目中的關鍵句是「播種面積的比是3:2」,也是一個預設條件,補完整就是「大豆面積與玉米面積的比是3:2,即,大豆面積:玉米面積=3:2 。對這一條件進行換說訓練,又可以得到以下說法和理解: ①玉米面積:大豆面積 = 2:3
②大豆面積是玉米面積的3/2(豆=玉×3/2;玉為單位「1」) ③玉米面積是大豆面積的2/3(玉=豆×2/3;豆為單位「1」)
④大豆面積比玉米面積多1/2〈 豆=玉 玉×1/2;豆=玉×(1 1/2);玉為單位「1」 〉 ⑤玉米面積比大豆面積少1/3 玉=豆-豆×1/3;玉 = 豆×(1-1/3);豆為單位「1」 ⑥大豆面積3份,玉米面積2份,共5份。
又如:「一張課桌比一把椅子貴10元,如椅子的單價是課桌的3/5。課桌、椅子各是多少元?」本題中的「 椅子的單價是課桌的3/5」這一條件也可以理解為「椅子單價:課桌單價=3:5」這樣又可以像上一例一樣進行探究,從而找出多種多樣的數量關系,這樣不僅加深了理解,豐富了解法,更有助於發展學生的思維。
總之,研究出的數量關系越多,「腦野」越開闊,思路越清析,解題方法越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於優秀學生的求知慾,使其在數學上得到更好的發展。
以上七個環節,並非是孤立的,每一環節都可能會有其他環節的相隨或參與。《數學課程標准》指出:學生是學習的主人,教師是數學教學的組織者,引導者與合作者。因此,在七環教學法中,教師要把握好自己的角色。提高學生解應用題的能力,是一個長期而復雜的過程,不能一蹴而就。教師要轉變思想觀念、教學方式和學習方式,經常以思為中心,讓說貫穿始終,充分調動學生感觀,使學生的腦、眼、口、手齊頭並進,勇於讓學生以合作交流等方式去主動探究。只有這樣,才能培養學生思維,拓寬解題思路。學生遇到應用題時,才能迎刃而解。
如何做好小學數學應用題教學
我們大家都知道,小學階段的學習是人的終身教育的起始站,學習數學不應僅僅是為了獲取有限的知識和技能。我們的教學更要注重讓學生學習自行獲取數學知識的方法,學習主動參與本領,獲得終身受用的可持續學習的發展性學力,即讓學生學會學習,為他們將來走向社會和終身學習打下基楚,由此,「以學生的發展為本」應是我們課堂教學的出發點和歸宿。
通過實踐教學獲得的經驗,我認為應用題難學的學生佔63%,很多學生家長也認為輔導子女學習應用題比較困難。存在這種現象的原因:一是題材內容不符合當地的實際情況,往往有些題型的內容在我們農村孩子從來都沒有見過或接觸過,也就是說現在教材中的應用題有許多內容脫離學生的實際生活,這就增加了學生對題目的理解缺乏興趣,缺少與其學科的聯系與溝通,從而影響到對其他學科的學習,教師只有普遍採用一問一答的講解;二是教學目標注重解題技能、解題技巧的訓練,忽視應用意識、應用能力及創新意識、創新精神的培養;。三是解法不活,解題思路不夠開闊,學生僅僅是模仿解題,沒有選擇的權利,沒有思考想像的機會,更沒有主動探究、創新思維的時間與空間。影響學生靈活運用知識。導致學生對應用題理解困難。四是應用題的呈現方式主要以城市為主,把農村的教育忽略,缺乏與農村知識的溝通,導致學生學得不明不白。教學模式單一,多為一例一練,應用性不強,學生學的時候好像明明白白,用的時候無從下手。因此,應用題的教學應該從上面這幾個問題去思考。從而增強應用題的應用味,提高學生解決實際問題的能力,提高應用題教學的效果。
如何使應用題更應生活化呢?我認為教師應該讓學生喜歡充滿樂趣的生活中的數學問題,所以有必要對教材中應用題的選材,作一下改編。例如教學相差關系的應用題時,老師提供給學生幾條信息:蘋果有20筐,梨子有12筐,蘋果比梨子多8筐。應該把「筐」改為「顆」或「個」就把學生帶入了身邊的情境中,讓學生感受到了數學就在身邊,使應用題有了「應用味」。?此外,應用題應具有多樣性和靈活性。多樣的、靈活的呈現應用題,能讓學生全面參與教學的過程,教師跟著學生的思路走,適時予以點撥,充分體現了學生學習的主體性。才能更有效的解決問題,既擴大農村孩子的眼界,又擴展孩子的知識面。這樣就能使得教育教學質量得到更好的提高。
如何教學應用題
小學三年級應用題是整數應用題的總結。在這一階段把整數應用題中的一般應用題和典型應用題作了一個全面的匯總。所以小學三年級應用題的教學是一個非常重要的階段,涉及一般應用題到典型應用題,從一步應用題到幾步應用題,這就要求學生掌握從普遍到特殊,從簡單到復雜的解答方法,也要求教師要幫助學生不斷地歸納、綜合,讓學生從已學習到的解題方法中找出規律,把握特點。
在小學三年級數學整數應用題的教學中,應注意抓住解答應用題的一般方法,教會學生解答應用題的切入點。我們知道解答一般思考應用題的方法是:問題〈--〉已知。解答過程是:1、讀題,2、分析,3、解答,[列式],4、檢查。而在教學實踐中,我覺得最難的是要教會學生把這個程有機的結合。於是,我就提出一些要求,讓學生知道解題過程中各個環節中應達到的目的,使學生有的放矢。例如在教學:「三年級一班栽樹40棵,二班栽的比一班多5棵。兩個班一共栽樹多少棵?」
這道應用題時,我就提出一系列的問題要學生思考:這道題說的什麼事?有幾個班栽樹?拿個班栽得多?「一共」是什麼意思?求「一共」用什麼方法?這一串問題使學生在思考的過程中把解題的方法也有機的結合起來。教會了學生怎樣去發現問題,提出問題,解決問題。也就教會了學生在不知不覺中運用從問題〈---〉已知的一般的解題方法。
小學三年級應用題中還涉及到許多典型應用題。如:路程除以速度=時間,總產量除以工效=工作時間,總產量除以單產量=數量,總價除以數量=單價。之所以把它們叫做典型應用題,是因為這類應用題有著極強的規律性。雖然這類應用題也可以用解答一般應用題的方法來解答,但如果學生把握到它的規律性,用它特有的典型關系式來分析、解答就會更加簡便。例如:商店有12箱水瓶,每箱5個,每個10元。著些水瓶一共可以賣多少元?(這道題是求總價,關系式是:總價=單價乘以數量)
這樣根據數量關系式就能輕松的解決這道題。當然一般典型應用題都不是一步的簡單應用題,這就要求學生要熟練地、准確地應用各種關系式子。在教學中教師要准確的定義關系式子中的一些慨念。如:「速度」,「單價」,「工效」等等。並列舉生活中有關慨念的例子,讓學生判斷、理解,逐步掌握、運用,以利於學生更好的解決典型應用題。
以上是我的一管之見,在大力實施素質教育的今天,學生素質的提高,有賴於教師素質的提高。希望我們不斷的研究教材,探索教法提高自身的素質,從而更好的貫徹素質教育。
如何教小學生解應用題
在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。
我認為應用題的教授一定要加強其思維的訓練,語言的訓練,這樣才能提高學生靈活解決實際問題的能力。所以我總結了以下幾個步驟:讀——劃——思——解,現分述如下,希望可以幫助學生更好的學習應用題。
1:讀
應用題是用語言表述的一類題型,對語言的理解能力要求非常高。因此,讀題便成為解應用題的一個重要環節是學生自己感知信息數據的過程。讀看起來很簡單,但數學應用題的讀並非泛泛而讀,它要求講究一定的方式,數學中的讀不講究抑揚頓挫、優美動聽,但需要用心、用腦、集中注意的讀,一般來講要讀三遍:第一遍初讀,對題目有初步印象;第二遍應逐字逐句的讀,重點理解每個詞、術語的實際含義;第三遍連貫起來讀,重點掌握題目的已知條件和所求問題。
例:星火煤廠上半年原計劃產煤6.6萬噸,實際每月比原計劃多產2.2萬噸,照這樣計算,完成上半年計劃需用幾個月?
在讀這個題目時需要通過大腦反映弄清四個問題: (1)這道題敘述的是哪個單位的什麼事?
(2)題目第一個條件是什麼?「上半年」和「原計劃」又是什麼? (3)題目第二個條件是什麼?關鍵詞是什麼?誰和誰比?比什麼?比的結果怎樣?
(4)問題是什麼?「照這樣計算」是什麼意思?
劃。顧名思義就是把什麼圈出來。這一步對小學生而言是無論如何都不能省略的,它是在讀完題後進行的,是在讀的基礎上進一步明確題意,抓住重點的關鍵。例如:在教《分數加減法》時,經常會遇到這樣的題目,一塊地公頃,其中種大豆, 種棉花,其餘種玉米,玉米的種植面積占這塊地的幾分之幾?
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出「幾分之幾」明白的告訴學生求的是一個分率,和 公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
思:
學生讀題後,獲取了一知和問題後,接下來就是在大腦中對這些信息進行加工,也就是思。一般來說,思有兩種思考方法:
(1)順著思考,即由已知——結論,從已知中獲取信息,一步步推出過程量,慢慢靠近所求結果:
例果園里有4行蘋果樹,每行18棵,還有2行梨樹,每行12棵,蘋果樹是梨樹的幾倍?
解:我們可以用圖把思考過程表示如下(順推) 已知
4行蘋果樹 2行梨樹 每行18棵每行12棵 蘋果樹總數 梨樹總數 蘋果樹是梨樹的幾倍?
(2)倒推法,即從問題入手——想要解決這個問題需要知道些什麼條件,這些條件是題目中的已知的,還是未知量,要知道這個未知量又需要什麼條件,需要什麼樣的數量關系來解決,直到在題目中找到已知:
同上例:執果溯因(倒推圖解) 問題: 蘋果樹是梨樹的幾倍? 蘋果樹有多少棵? 梨樹有多少棵? 4行蘋果樹 2行梨樹 每行18棵每行12棵
已知
綜上,思考應用題是培養學生思維能力的中心環節。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。要留給學生充分思考的餘地,為學生提供一個獨立思考的機會。
解,指的是學生的解答。或許學生認為這一部分他們是最會的。其實要把一道應用題完整的寫下來,讓老師給你滿分。同樣需要錘煉。學生需要把剛才思考的過程用數字的形式表示出來。在解應用題時,題目中沒有出現過的數學是不可以出現在題目中的,即使是顯而易見的數字也需要你進行一定的說明。這是數學的嚴謹性。所寫的式子,要讓別人看了也完全明白你的思路,這樣才是一個漂亮的式子。應用題寫的時候要注意:如果是方程,學生的解設就是不可或缺的。所列的方程未知數後面並不需要有單位名稱。但如果是一般的式子,單位名稱則需要寫上去。當然求比率、分率等是沒有單位名稱的。最後是寫上完整的答句。其實要完成一道應用題,每一個部分都不可以忽略。所以更需要學生通過前面的認真讀、仔細劃,努力想才能最終完整的寫完。
其實,要完成一道應用題,每一個部分都是不可忽略的,而做到以上步驟的前提是掌握基礎知識和各種基本用演算法則,這就需要教師在平時的教學中不斷訓練和督導,每講完一道題後,引導學生進行反思:對該類型題進行再分析、進一步解剖題干、挖掘其等量關系,並進一步總結;例如:「相遇問題」,題後思考總結:1、什麼樣的題目表述的是相遇問題?2、這類問題的等量關系是什麼?3、拿到這樣的題目該怎樣列式計算?4、它與「追及問題」有什麼異同等等?
總之,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。 如何教好小學數學應用題?