㈠ 高中數學有幾本必修
5本
㈡ 高中人教版數學 必修有幾本高一、高二都上哪幾本
有4本,上必修1,2,4,5。
主要信息:
《高中數學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數學課程教材研究開發中心共同編制,內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。
數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。
㈢ 現在高中數學必修幾必修幾是什麼意思啊
必修就是無論你以後個人的學業走向是什麼,你接受高中教育都必須要掌握的,也就是高中的最基礎內容,是國家大綱要求的;
選修,是根據你個人將來的發展志向,需要你在某些方面更進一步要了解和掌握的知識,以利於大學的後續學習。
㈣ 高一的數學有幾本數學書分別是必修幾到必修幾
高一數學一共有四本數學書,分別是《高中數學必修一》、《高中數學必修二》、《高中數學必修三》、《高中數學必修四》。
1、《高中數學必修一》:是2007年人民教育出版社出版的圖書,作者是人民教育出版社課題材料研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。
2、《高中數學必修二》:是2007年9月由人民教育出版社出版的圖書,作者是王申懷。該書主要內容是認識空間圖形,通過對空間幾何體的整體把握,培養和發展空間想像能力。
3、《高中數學必修三》:是新課標高中數學必修系列的第3本書籍,分為A、B兩版,由人民教育出版社出版發行。本書主要內容是對演算法,統計,概率知識的講解與總結。
4、《高中數學必修四》:數學4(必修)的內容包括三角函數、平面向量、三角恆等變換。三角函數是描述周期現象的重要數學模型,在數學和其他領域中具有重要的作用。這是學生在高中階段學習的最後一個基本初等函數。
高中數學必修教材之間的聯系:
數學教材中有許多概念都有著密切的聯系,如平行線段與平行向量、平面角與空間角、方程與不等式、映射與函數、對立事件與互斥事件等等,在教學中應善於尋找、分析其聯系與區別,有利於學生掌握概念的本質。
函數概念有兩種定義,一種是初中給出的定義,是從運動變化的觀點出發,其中的對應關系是將自變數的每一個取值,與唯一確定的函數值對應起來:另一種是高中給出的定義,是從集合、對應的觀點出發,其中的對應關系是將原象集合中的每一個元素與象集合中唯一確定的元素對應起來。
㈤ 高中數學有必修幾
高中數學必修一共5本(必修1、2、3、4、5)
理科必選3本(2-1
2-2
2-3)
文科必選2本(1-1
1-2)
選修還有10幾本,但不用都學,學個1~2本就行了。選修都很薄,也就不到50頁。
推薦選修:不等式選講,平面幾何,比較好學,也很有用
㈥ 高中數學必修和選修有幾本
高中數學共學習11本書,其中必修5本,選修6本。
必學部分:必修1、必修2、必修3、必修4、必修5、選修1-1、選修1-2;
選學部分:選修4-1(幾何證明選講)、選修4-2(矩陣與變換)、選修4-4(坐標系與參數方程)、選修4-5(不等式選講)。
(6)高中數學有多少必修擴展閱讀:
必修一
1、集合
(約4課時)
(1)集合的含義與表示
①通過實例,了解集合的含義,體會元素與集合的「屬於」關系。
②能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
(2)集合間的基本關系
①理解集合之間包含與相等的含義,能識別給定集合的子集。
②在具體情境中,了解全集與空集的含義。
(3)集合的基本運算
①理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
2、函數概念與基本初等函數
(約32課時)
(1)函數
①進一步體會函數是描述變數之間的依賴關系的重要數學模型,在此基礎上學慣用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。
③了解簡單的分段函數,並能簡單應用。
④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
⑤學會運用函數圖象理解和研究函數的性質(參見例1)。
(2)指數函數
①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。
②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。
④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型(參見例2)。
(3)對數函數
①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。
②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。
③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。
(4)冪函數
通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。
(5)函數與方程
①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
(6)函數模型及其應用
①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
(7)實習作業
根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例。
採取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。具體要求參見數學文化的要求。
㈦ 高中一共要學幾本必修數學的書(人教版)
高中必修數學是有5本的(必修1、2、3、4、5)。然後選修的話就有3本(學理科的學2-1,2-2,2-3,學文科的就學1-1,1-2),再後面還有四本選修(4-1,4-2,4-4,4-5)但是這四本不學的。一般學校都是在高一的上學期學是必修1、2 ,下學期就學必修3、4。然後高二學必修五和選修(1-1,1-2)。
㈧ 高中數學有多少本必修,多少本選修,高一學哪幾本,高二學哪幾本,
高中數學必修5本
選修部分,理科生是選修2系列,文科生是1系列.
高一是必修1到4,半個學期完一本
高二學必修5和選修,高三復習
高一必修1學函數,包括指數函數和對數函數和冪函數
必須二是立體幾何和解析幾何,我認為最難
必須三學演算法,統計,概率
必須四學三角函數,平面向量
㈨ 高中數學有多少本必修,多少本選修,高一學
不同的地區有所不同
數學
必修5本選修3本
物理
選修21,22,23,24,25
化學
選修3,4,5
生物
選修1,3
高二學業水平考試
一般只考必修本
㈩ 高中數學一共有幾本必修
必修有5本(必修1、2、3、4、5),選修的話有3本(學理的學2-1,2-2,2-3,學文的學1-1,1-2),後面還有四本選修(4-1,4-2,4-4,4-5)這四本不學的。