❶ 什麼是二階偏微分,不定積分,定積分誰可以幫我理清積分與微分的不同在什麼情況下使用。
偏微分是枝逗對多元函數的一種求導方式,把其中一個變數作為常數來看待,對另一個變數進行求導,所謂二階分三種情況:對x求兩遍,對y求兩遍,對x,y各求一遍。
不定積分是找導數函數的原函數,沒有幾何意義;定察搭穗積分有幾何意義,一元定積分是求曲邊梯形的面積。由牛頓——萊布尼茨公式聯系起來的。
微分是一個變數的增量y隨另一個變數的增量x的變化,當另一個增量x趨於0時,增量y就趨近於微分dy = f'(x)dx.
積分學友很多的應用,在高等數學中,可求面敗卜積,體積,曲率等等;物理中大部分計算都是定積分。
❷ 如何用Matlab求解偏微分方程,並畫出圖像
用Matlab求解偏微分方程,可以用pde工具箱來解決。例如,簡單的點熱源方程
❸ 數學建模方法和步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
❹ 偏微分方程一般用來解決什麼問題
偏虛培純微分方程一般用來解決什麼問題
偏微分方程是微分方程中出現的未知函數只含一個自變數,如果一個微分方程中出現多元函數的偏導數,或者說如果未知函數差咐和幾個變數有關,而且方程中出現未知函數對應幾個變數的導數,那麼這種微分中梁方程就是偏微分方程。
❺ 偏微分方程在哪些方面應用較多
偏微分方程的應用非常廣泛,除了在物理方面的應用以外,它在金融數攔胡喚學里也很有用。在金融數學中可以用偏微分方程來求解金融問題。此外在工程、電器、化學等方面偏微分方程也扮演重要角色。例如在化學中的做裂分子擴散理論、電加工、石油以及煉鋼等方面,都與偏微分方程密切相關。同學們在進一步學習中就會慢慢簡凱體會到它的重要性。
❻ 數學建模有哪些方法
一、機理分析法 從基本物理定律以及系統的結構數據來推導出模型.
1.比例分析法--建立變數之間函數關系的最基本最常用的方法.
2.代數方法--求解離散問題(離散的數據、符號、圖形)的主要方 法.
3.邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用.
4.常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式.
5.偏微分方程--解決因變數與兩個以上自變數之間的變化規律.
二、數據分析法 從大量的觀測數據利用統計方法建立數學模型.
1.回歸分析法--用於對函數f(x)的一組觀測值(xi,fi)i=1,2… n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法.
2.時序分析法--處理的是動態的相關數據,又稱為過程統計方法.
三、模擬和其他方法
1.計算機模擬(模擬)--實質上是統計估計方法,等效於抽樣試驗
① 離散系統模擬--有一組狀態變數.
② 連續系統模擬--有解析表達式或系統結構圖.
2.因子試驗法--在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構.
3.人工現實法--基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統.
❼ 有沒有大神能給解一下偏微分方程的,數學建模很急用,短時間內來不及學matlab了,學妹跪求啊!
球坐標下的非穩態擴散方程,沒有解析解的