導航:首頁 > 數字科學 > 數學分析有哪些系統

數學分析有哪些系統

發布時間:2022-02-28 09:17:36

1. 大數據分析系統平台方案有哪些

目前常用的大數據解決方案包括以下幾類
一、Hadoop。Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。

三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來
四、Apache Drill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

2. 數據分析系統有哪些

1、 Cloudera Cloudera


提供一個可擴展、靈活、集成的平台,可用來方便的管理您的企業中快速增長的多種多樣的數據,從而部署和管理Hadoop和相關項目、操作和分析您的數據以及保護數據的安全。Cloudera Manager是一個復雜的應用程序,用於部署、管理、監控CDH部署並診斷問題,Cloudera Manager提供Admin Console,這是一種基於Web的用戶界面,是您的企業數據管理簡單而直接,它還包括Cloudera Manager API,可用來獲取集群運行狀況信息和度量以及配置Cloudera Manager。


2、 星環Transwarp


基於hadoop生態系統的大數據平台公司,國內唯一入選過Gartner魔力象限的大數據平台公司,對hadoop不穩定的部分進行了優化,功能上進行了細化,為企業提供hadoop大數據引擎及資料庫工具。


3、 阿里數加


阿里雲發布的一站式大數據平台,覆蓋了企業數倉、商業智能、機器學習、數據可視化等領域,可以提供數據採集、數據深度融合、計算和挖掘服務,將計算的幾個通過可視化工具進行個性化的數據分析和展現,圖形展示和客戶感知良好,但是需要捆綁阿里雲才能使用,部分體驗功能一般,需要有一定的知識基礎。maxcompute(原名ODPS)是數加底層的計算引擎,有兩個維度可以看這個計算引擎的性能,一個是6小時處理100PB的數據,相當於1億部高清電影,另外一個是單集群規模過萬台,並支持多集群聯合計算。


4、 華為FusionInsight


基於Apache進行功能增強的企業級大數據存儲、查詢和分析的統一平台。完全開放的大數據平台,可運行在開放的x86架構伺服器上,它以海量數據處理引擎和實時數據處理引擎為核心,針對金融、運營商等數據密集型行業的運行維護、應用開發等需求,打造了敏捷、智慧、可信的平台軟體。


5、網易猛獁


網易猛獁大數據平台使一站式的大數據應用開發和數據管理平台,包括大數據開發套件和hadoop發行版兩部分。大數據開發套件主要包含數據開發、任務運維、自助分析、數據管理、項目管理及多租戶管理等。大數據開發套件將數據開發、數據分析、數據ETL等數據科學工作通過工作流的方式有效地串聯起來,提高了數據開發工程師和數據分析工程師的工作效率。Hadoop發行版涵蓋了網易大數據所有底層平台組件,包括自研組件、基於開源改造的組件。豐富而全面的組件,提供完善的平台能力,使其能輕易地構建不同領域的解決方案,滿足不同類型的業務需求。

3. 數學分析是一門什麼學科

數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
數學屬性是任何事物的可量度屬性,即數學屬性是事物最基本的屬性。可量度屬性的存在與參數無關,但其結果卻取決於參數的選擇。例如:時間,不管用年、月、日還是用時、分、秒來量度;空間,不管用米、微米還是用英寸、光年來量度,它們的可量度屬性永遠存在,但結果的准確性與這些參照系數有關。
數學是研究現實世界中數量關系和空間形式的科學。簡單地說,是研究數和形的科學。由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。
基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。
今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現。
創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。

數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。
劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次方程的解法等。
據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。
唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。
算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。
中國古代數學的繁榮
960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。
從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。
從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。
把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的內插公式。
用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。
從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。
朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。
勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個容圓公式,大大豐富了中國古代幾何學的內容。
已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。
中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元代。
宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑是促進數學發展的重要因素。

4. 數據分析中資料庫管理系統有哪些

1、SYBASE


是一種典型的UNIX或WindowsNT平台上客戶機/伺服器環境下的大型資料庫系統。 Sybase提供了一套應用程序編程介面和庫,可以與非Sybase數據源及伺服器集成,允許在多個資料庫之間復制數據,適於創建多層應用。系統具有完備的觸發器、存儲過程、規則以及完整性定義,支持優化查詢,具有較好的數據安全性。


2、DB2


DB2主要應用於大型應用系統,具有較好的可伸縮性,可支持從大型機到單用戶環境,應用於所有常見的伺服器操作系統平台下。 DB2提供了高層次的數據利用性、完整性、安全性、可恢復性,以及小規模到大規模應用程序的執行能力,具有與平台無關的基本功能和SQL命令。


DB2採用了數據分級技術,能夠使大型機數據很方便地下載到LAN資料庫伺服器,使得客戶機/伺服器用戶和基於LAN的應用程序可以訪問大型機數據,並使資料庫本地化及遠程連接透明化。


3、SQL Server


SQL Server 是Microsoft 公司推出的關系型資料庫管理系統。具有使用方便可伸縮性好與相關軟體集成程度高等優點,可跨越從運行Microsoft Windows 98 的膝上型電腦到運行Microsoft Windows 2012 的大型多處理器的伺服器等多種平台使用。


Microsoft SQL Server 是一個全面的資料庫平台,使用集成的商業智能 (BI)工具提供了企業級的數據管理。Microsoft SQL Server 資料庫引擎為關系型數據和結構化數據提供了更安全可靠的存儲功能。


4、Access


Microsoft Office Access是由微軟發布的關系資料庫管理系統。它結合了 MicrosoftJet Database Engine 和 圖形用戶界面兩項特點,是 Microsoft Office 的系統程序之一。


MS ACCESS以它自己的格式將數據存儲在基於Access Jet的資料庫引擎里。它還可以直接導入或者鏈接數據(這些數據存儲在其他應用程序和資料庫)。


5、Visual FoxPro


Visual FoxPro簡稱VFP,是Microsoft公司推出的資料庫開發軟體,用它來開發資料庫,既簡單又方便。Visual FoxPro源於美國Fox Software公司推出的資料庫產品FoxBase,在DOS上運行,與xBase系列相容。FoxPro原來是FoxBase的加強版,最高版本曾出過2.6。


之後,Fox Software被微軟收購,加以發展, 使其可以在 Windows 上運行, 並且更名為 Visual FoxPro。目前最新版為 Visual FoxPro 9.0,而在學校教學和教育部門考證中還依然延用經典版的 Visual FoxPro 6.0。

5. 國內外有哪些比較實用的bi數據分析系統

國內外有很多好用的bi數據分析系統,比如思邁特軟體Smartbi。

廣州思邁特軟體Smartbi有限公司(思邁特軟體Smartbi)成立於2011年,致力於為企業客戶提供一站式商業智能解決方案,以提升和挖掘企業客戶的數據價值為使命,專注於商業智能(BI)與大數據分析軟體產品與服務。

思邁特軟體Smartbi 伺服器部署採用 java 的 web 應用方式,服務端對環境沒有限制。功能比較齊全,像復雜報表、數據錄入、統計圖展示都支持,而且現在帶了 Word 和 PPT 插件,開發出來的報告格式效果比較好。

自助分析平台上線之後,業務人員難免會遇到各種問題,比如對數據的困惑、對功能的學習、對平台的操作等,都需要能盡快得到協助。此時在數據答疑模塊,我們能向系統運營團隊或者管理員詢問,平台用戶間也可交流。

當問題不便公開,還能設置 為私密性質,只有指定人員才能看到。更妙的是,提問人可以設置最佳答案,運營人員也可以對問答設置很多標簽,用戶可以根據自己的需求,使用不同的標簽來給問答設置分類管理,方便搜索,從而對問題和經驗也能有良好的沉澱。

數據分析有沒有用,來試試Smartbi就知道了,Smartbi產品功能設計全面,涵蓋數據提取、數據管理、數據分析、數據共享四個環節,幫助客戶從數據的角度描述業務現狀,分析業務原因,預測業務趨勢,推動業務變革。

思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台

6. 大學課程中的數學分析很難嗎數學分析是什麼

2020年春季學期微課郭雨辰數學分析(超清視頻)網路網盤

鏈接:

提取碼: vn5b 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~

7. 高等數學和數學分析有什麼不同

1、定義不同

高等數學:指相對於初等數學而言,數學的對象及方法較為繁雜的一部分。

數學分析:又稱高級微積分,分析學中最古老、最基本的分支。

2、學習內容不同:

高等數學:主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

數學分析:一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。

3、發展歷史不同

高等數學:一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。

數學分析:在古希臘數學的早期,數學分析的結果是隱含給出的。比如,芝諾的兩分法悖論就隱含了幾何級數的和。再後來,古希臘數學家如歐多克索斯和阿基米德使數學分析變得更加明確,但還不是很正式。

他們在使用窮竭法去計算區域和固體的面積和體積時,使用了極限和收斂的概念。在古印度數學的早期,12世紀的數學家婆什迦羅第二給出了導數的例子。

8. 大學課程中的數學分析是什麼

大學課程中的數學分析是是數學專業的必修課程之一,基本內容是微積分.

9. 數學分析包括哪些內容

又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
早期的微積分,已經被數學家和天文學家用來解決了大量的實際問題,但是由於無法對無窮小概念作出令人信服的解釋,在很長的一段時間內得不到發展,有很多數學家對這個理論持懷疑態度,柯西(Cauchy)和後來的魏爾斯特拉斯(weierstrass)完善了作為理論基礎的極限理論,擺脫了「要多小有多小」、「無限趨向」等對模糊性的極限描述,使用精密的數學語言來描述極限的定義,使微積分逐漸演變為邏輯嚴密的數學基礎學科,被稱為「Mathematical Analysis」,中文譯作「數學分析」。
實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函數的各種極限運算的合法性的過程中,人們逐漸建立起了嚴密的數學分析理論體系。

10. 什麼是數據分析系統

進行大量數據歸類的系統~資料庫強大~可進行數據對比和運算

閱讀全文

與數學分析有哪些系統相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:704
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1317
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1022
大學物理實驗干什麼用的到 瀏覽:1448
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:829
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1606
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017