導航:首頁 > 數字科學 > 6年級上冊數學每單元分別學到了什麼

6年級上冊數學每單元分別學到了什麼

發布時間:2023-03-16 23:26:26

❶ 六年級數學上冊學習的主要內容

圓的認識(一)
1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.
2.圓有無數條半徑,有無數條直徑.
3.圓心決定圓的位置,半徑決定圓的大小.
圓的認識(二)
4.把圓對折,再對折就能找到圓心.
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長和半圓的周長:
7.圓一周的長度就是圓的周長.半圓的周長等於圓周長的一半加一條直徑。
8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.
百分數的應用
百分數的應用(四)
14.利息=本金乘利率乘時間
比的認識
15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.
六年級全冊數學知識點(整個小學階段和中學都通用,比較重要)
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
【和差問題公式】
(和+差)÷2=較大數; (和-差)÷2=較小數。
【和倍問題公式】
和÷(倍數+1)=一倍數; 一倍數×倍數=另一數, 或 和-一倍數=另一數。
【差倍問題公式】
差÷(倍數-1)=較小數; 較小數×倍數=較大數, 或 較小數+差=較大數。
【平均數問題公式】
總數量÷總份數=平均數。
【一般行程問題公式】
平均速度×時間=路程; 路程÷時間=平均速度; 路程÷平均速度=時間。
【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:
(速度和)×相遇(離)時間=相遇(離)路程;
相遇(離)路程÷(速度和)=相遇(離)時間;
相遇(離)路程÷相遇(離)時間=速度和。
【同向行程問題公式】
追及(拉開)路程÷(速度差)=追及(拉開)時間;
追及(拉開)路程÷追及(拉開)時間=速度差;
(速度差)×追及(拉開)時間=追及(拉開)路程。
【列車過橋問題公式】
(橋長+列車長)÷速度=過橋時間;
(橋長+列車長)÷過橋時間=速度;
速度×過橋時間=橋、車長度之和。
【行船問題公式】
(1)一般公式:
靜水速度(船速)+水流速度(水速)=順水速度;
船速-水速=逆水速度;
(順水速度+逆水速度)÷2=船速; (順水速度-逆水速度)÷2=水速。
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。
(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。
僅供參考:
【工程問題公式】
(1)一般公式:
工效×工時=工作總量; 工作總量÷工時=工效; 工作總量÷工效=工時。
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾;
1÷單位時間能完成的幾分之幾=工作時間。
(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)
【盈虧問題公式】
(1)一次有餘(盈),一次不夠(虧),可用公式:
(盈+虧)÷(兩次每人分配數的差)=人數。
例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」
解(7+9)÷(10-8)=16÷2
=8(個)………………人數
10×8-9=80-9=71(個)………………………桃子
或8×8+7=64+7=71(個)(答略)
(2)兩次都有餘(盈),可用公式:
(大盈-小盈)÷(兩次每人分配數的差)=人數。
例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(發)
或50×96+200=5000(發)(答略)
(3)兩次都不夠(虧),可用公式:
(大虧-小虧)÷(兩次每人分配數的差)=人數。
例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不夠(虧),另一次剛好分完,可用公式:
虧÷(兩次每人分配數的差)=人數。
(例略)
(5)一次有餘(盈),另一次剛好分完,可用公式:
盈÷(兩次每人分配數的差)=人數。
(例略)
【雞兔問題公式】
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二 (4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答 略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一 (4×1000-3525)÷(4+15)
=475÷19=25(個)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
***【植樹問題公式】
(1)不封閉線路的植樹問題:
間隔數+1=棵數;(兩端植樹)
路長÷間隔長+1=棵數。
或 間隔數-1=棵數;(兩端不植)
路長÷間隔長-1=棵數;
路長÷間隔數=每個間隔長;
每個間隔長×間隔數=路長。
(2)封閉線路的植樹問題:
路長÷間隔數=棵數;
路長÷間隔數=路長÷棵數
=每個間隔長;
每個間隔長×間隔數=每個間隔長×棵數=路長。
(3)平面植樹問題:
佔地總面積÷每棵佔地面積=棵數
【求分率、百分率問題的公式】
比較數÷標准數=比較數的對應分(百分)率;
增長數÷標准數=增長率;
減少數÷標准數=減少率。
或者是
兩數差÷較小數=多幾(百)分之幾(增);
兩數差÷較大數=少幾(百)分之幾(減)。
【增減分(百分)率互求公式】
增長率÷(1+增長率)=減少率;
減少率÷(1-減少率)=增長率。
比甲丘面積少幾分之幾?」
解 這是根據增長率求減少率的應用題。按公式,可解答為
百分之幾?」
解 這是由減少率求增長率的應用題,依據公式,可解答為
【求比較數應用題公式】
標准數×分(百分)率=與分率對應的比較數;
標准數×增長率=增長數;
標准數×減少率=減少數;
標准數×(兩分率之和)=兩個數之和;
標准數×(兩分率之差)=兩個數之差。
【求標准數應用題公式】
比較數÷與比較數對應的分(百分)率=標准數;
增長數÷增長率=標准數;
減少數÷減少率=標准數;
兩數和÷兩率和=標准數;
兩數差÷兩率差=標准數;
【方陣問題公式】
(1)實心方陣:(外層每邊人數)2=總人數。
(2)空心方陣:
(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。
或者是
(最外層每邊人數-層數)×層數×4=中空方陣的人數。
總人數÷4÷層數+層數=外層每邊人數。
例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?
解一 先看作實心方陣,則總人數有
10×10=100(人)
再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是
10-2×3=4(人)
所以,空心部分方陣人數有
4×4=16(人)
故這個空心方陣的人數是
100-16=84(人)
解二 直接運用公式。根據空心方陣總人數公式得
(10-3)×3×4=84
原價等於現價除以打幾折
打幾折等於原價除以現價
現價等於原價乘以打幾折

❷ 六年級數學上冊主要的內容是什麼每單元的重點是什麼

第一單元:只要記住先列在行。
第二單元:1.分數乘分數,分子乘分子,分母乘分母,能約分的先約分再乘。
2.整數乘法的交換律、結合律、分配律,對與分數乘法也適用。
3.誰是誰的幾分之幾就是誰乘以誰。
4.乘積是1的兩個數互為倒數。
第三單元:1.除以一個不等於0 的數,等於乘這個數的倒數。
2.已知一個數的幾分之幾是多少,求這個數,就等於那個數除以幾分之幾。
3.已知比一個數多或少幾分之幾的數是多少,就等於多或少的部分除以單位1.
4.比的前項除以後項等於比值。
第四單元:1.連接圓心和圓上的任意一點的線段叫做半徑。通過圓心並且兩端都在圓上的線段叫做直徑。
2.半徑=r,直徑=d,C=πd=2πr,S=πr*,圓環S=π(R*-r*)
第五單元:1.百分數表示一個數是另一個數的百分之幾,百分數也叫百分比或百分率。
2.已知比一個數多或少百分之幾的數是多少,就等於多或少的部分除以單位1.
3.幾折就表示十分之幾也就是百分之幾。
4.應納稅額=營業額X稅率 利息=本金X利率X時間
後面的沒有重點

❸ 六年級數學上冊每個單元的名稱

第一單元:位置 (如何表示位置)
第二單元:分數乘法(裡面還包括倒數的認識)
第三單元:分笑岩數除法 (包括比的應用)
第四單元:圓 (了解圓,求圓的周長碰斗御和面積)
第五單元:百分數 (百分數的認識,百分數和小數、分數的互化,用百分數解決問題,另外還有折扣、納稅等)
第六單元:統計(條形統計圖,折線統計圖,扇形統計圖等更適用於那些方面之類的問題)
第七單元:數學廣角(解雞兔同籠類的問題)
第八單元:總復習
手打得好銷談累啊,幫你把各個單元都總結了一下,自認為六年級上學期數學並不難學,主要就是分數乘除一部分有些難,只要弄明白整體"1"其實就可以了.

❹ 六年級上冊你學到了哪些數學知識,你有那些收獲和感受呢

學會了分數乘法,分數除法的運算,能將他們靈活運用。懂得了百分數的寫法讀法及運算,了解了比,解決了數對以及雞兔同籠的問題。學會了求圓的面積和圓的周長,扇形和扇環的面積,全面掌握了位置與方向,回顧了曾經的折線統計圖和條形統計圖,又新學了扇形統計圖。在數學廣角中了解了數與形,在這一學期中學到了許許多多的知識。

❺ 小學六年級的數學學習內容有什麼(人教版)

上冊:位置、分數乘法、分數除法、圓、百分數、統計、數學廣角
下冊:負數、圓柱與圓錐、比例、統計、數學廣角

❻ 人教版六年級上冊數學書第二單元的內容

第二單元分數乘法



一、教學內容

本單元教學內容包括三部分內容:分數乘法、解決問題和倒數。

二、教學目標

1.理解分數乘法的意義,掌握分數乘法的計算方法,會進行分數乘法計算。

2.理解乘法運算定律對於分數乘法同樣適用,並會應用這些運算定律進行一些簡便計算。

3.理解倒數的意義,掌握求倒數的方法。

4.會運用分數乘法解決一些簡單的實際問題,體會數學與日常生活的聯系。

三、具體編排

1.分數乘法(安排了6個例題)

分三個層次進行教學。

第一個層次學習分數乘整數,在整數乘法和分數加法的基礎上學習。

第二個層次學習分數乘分數,在理解分數乘法意義的基礎上,通過操作去理解和學習。通過這兩個層次的學習幫助學生理解並掌握分數乘法的計算方法。

第三個層次學習混合運算的內容,使學生理解整數乘法運算定律與運算順序對分數運算同樣適用,並會運用乘法運算定律進行分數的簡便計算。

例1(教學分數乘整數)

從分數乘整數引入分數乘法教學,幫助學生理解分數乘整數的意義及算理,掌握計算方法。從人的步距與袋鼠步距的比較這樣一個實際問題引入。分四個步驟安排教學內容。

(1)給出信息,提出問題。

(2)用線段圖幫助學生理解題意,使學生明確:求人跑3步的距離是袋鼠跳一下的幾分之幾,實際上是求3個2/11,為探究計算方法做好准備。

(3)探究計算方法。

先出示加法計算,是同分母分數相加,屬已學過的內容。

再出示乘法計算,根據乘法的意義,將乘式轉化為加法算式計算:分母不變,分子相加。再根據乘法的意義,將同分子連加的形式轉化為乘式,得出分數乘整數的計算方法:分母不變,分子與整數相乘的積作分子。

(4)討論歸納分數乘整數的計算方法。

例2(說明分數乘整數,為了計算簡便能約分的要先約分再計算)

在學生掌握分數乘整數的計算方法基礎上,使學生進一步了解乘得的積一般應該化成最簡分數。把積化為最簡分數有兩種處理方法,一是將乘得的積的分子與分母約分,另一種方法是在乘的過程中將分數的分母與整數進行約分。教材突出第二種方法,說明能約分的先約分再計算可以使計算簡便。

例3(教學分數乘分數)

分數乘分數的算理較難理解,所以本例通過直觀操作,幫助學生理解算理。分兩個層次教學,先解決求一個數的幾分之一的問題,再解決求一個數的幾分之幾是多少的問題。(具體說明)

解決第一個問題:1/4小時粉刷這面牆的幾分之幾?可分兩步操作。第一步把一張長方形的紙片看作一面牆,先塗出1小時粉刷的面積,即這面牆的1/5,第二步再塗出1/4小時粉刷這面牆的面積,即1/5的1/4,直觀得出1/5的1/4是1/20。在此基礎上,根據操作的過程和結果推導出計算方法。

第二個問題:3/4小時粉刷多少?讓學生用前面的方法塗色、推導與計算,自主解決問題。

在此基礎上以學生討論的形式得出分數乘分數的計算方法。

例4(說明分數乘分數應先約分再乘)

通過計算,使學生明確分數乘分數計算也應該先約分再乘,這樣計算比較簡便。

這里還提出了分數乘整數的計算方法,除了像例2那樣寫成3×6/8後進行約分,也可以把分數的分母與整數直接約分。把分數乘法的兩種形式集中呈現,加強對比與聯系。

例5:教學整數乘法運算定律推廣到分數。

通過觀察計算得出「整數乘法的交換律、結合律和分配律,對於分數乘法也同樣適用」。

例6(乘法運算定律的應用)

結合具體計算,說明乘法運算定律在分數乘法計算中的應用。

「做一做」安排運用運算定律進行分數乘法的簡便計算。

2.解決問題

教材共安排3個例題,分2個層次教學。

例1教學解答求一個數的幾分之幾是多少的問題;

例2、例3教學稍復雜的求一個數的幾分之幾是多少的問題。

例1(教學求一個數的幾分之幾是多少的問題)

以中國人均耕地面積與世界人均耕地面積這兩個量的比較引入。

用線段圖表示出問題的數量關系和要求的問題,用「想」這種形式來提示學生根據線段圖思考解決問題的思路,由於是「我國人均耕地面積」與「世界人均耕地面積」相比較,其中「世界人均耕地面積」是表示單位「1」的量,知道世界人均耕地面積為2500㎡,求我國人均耕地面積就是求2500的2/5是多少。最後列式計算解決問題。

最後針對計算的結果進行國情教育。

「做一做」安排一道與例題相同類型的題目,以鞏固這類問題的解決思路與方法。

例2(稍復雜的求一個數的幾分之幾是多少的問題)

這是一個數量與它的部分量的比較關系,即知道一個部分量是總量的幾分之幾,求另一個部分量的問題。

教材選取了綠化造林可以降低噪音這一環保題材,出示一幅情景圖:公路上汽車的噪音有80分貝,在綠化隔離帶後面,噪音降低了1/8。提出問題:人現在聽到的聲音是多少分貝?

解答一般有兩種方法,一種是先求出已知是總量幾分之幾的部分量,再用總量減去這個部分量,求出另一個部分量。教材用線段圖表示出數量關系及解題的兩個步驟,並以學生敘述解決思路的方式提示出先求什麼。然後列出算式,讓學生求出結果。

另一種是先求出要求的部分量占總量的幾分之幾,再根據分數乘法的意義求出這個部分量是多少。教材僅出示線段圖,提示要找出先求什麼,沒有給出解答算式,意圖要求學生自主探索解決問題。

最後要求學生對兩種思路進行比較,目的是通過比較,加深對兩種思考方法的認識,同時培養學生比較、歸納的能力。

例3(稍復雜的求一個數的幾分之幾是多少的問題)

這是兩個數量的比較關系,即已知一個數量比另一個數量多(少)幾分之幾,求這個數量。

教材以人心臟跳動次數為素材引入例題。

其中「嬰兒每分鍾心跳的次數比青少年多4/5」是解題的關鍵。教材由小精靈提出「嬰兒每分鍾心跳的次數比青少年多4/5表示什麼意思?」讓學生理解其含義。這句話可以轉化為「嬰兒每分鍾比青少年多跳的次數是青少年每分鍾心跳次數的4/5。」理解了這句話,就應該知道把什麼看作單位「1」,就容易理解數量關系了,接著教材還是利用線段圖幫助理解數量關系。

這題也有兩種解答方法,教材只出現一種,另一種方法教材沒有出示,只是用「想一想,還有其他的方法嗎」提示讓學生結合例2的學習自己想出。

3.倒數的認識

這部分內容是在學習了分數乘法的基礎上教學的,主要為後面學習分數除法做准備。

安排了2個例題,分別教學倒數的意義和求倒數的方法。

例1(教學倒數的含義)

編排了幾組乘積為1的乘法算式,通過學生觀察、討論等活動,找出它們的共同特點,導出倒數的定義。

要讓學生理解「互為倒數」的含義,即倒數是表示兩個數之間的關系,這兩個數是相互依存的,倒數不能單獨存在。如「不能說7/3是倒數」。

可以讓學生根據對倒數意義的理解,說出幾組倒數,看學生是否真正理解和掌握。

例2(教學求倒數的方法)

教材先安排找倒數的活動,從而初步體驗找倒數的方法:調換分子、分母的位置。

在總結求倒數的方法時,要分三種情況:

一般求一個分數的倒數是交換分數的分子、分母的位置;

求整數的倒數是把整數看作分母是1的分數,再交換分子和分母的位置。

1和0的倒數的問題,讓學生思考討論得到結論。

在討論的基礎上歸納:根據倒數的意義,因為1×1=1,所以1的倒數是1;因為0與任何數相乘都是0,所以0沒有倒數。

四、教學建議

1.注意相關的已有知識的復習。

本單元各部分知識都與前面的知識有密切的聯系。

2.加強分數乘法的意義的教學。

對分數乘法的意義理解不僅是理解分數乘分數算理的關鍵,而且是求一個數的幾分之幾是多少的基礎。因此一定要重視分數乘法意義的教學。

3.藉助多種方式幫助學生學會分析數量關系的方法。

本單元的解決問題是由乘法意義的擴展產生的,數量關系比較特殊,藉助多種方式幫助學生學會分析數量關系的方法。

閱讀全文

與6年級上冊數學每單元分別學到了什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1344
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:879
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1018
win7如何刪除電腦文件瀏覽歷史 瀏覽:1050
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1694
西安瑞禧生物科技有限公司怎麼樣 瀏覽:958
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1645
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053