導航:首頁 > 數字科學 > 解答題數學怎麼

解答題數學怎麼

發布時間:2023-03-22 06:16:46

『壹』 小學數學應用題解題技巧有哪些

小學數學應用題解題技巧如下:

注意審題。即在作題之前先把題目讀上三遍,理解題目的意思、數量關系、問題是什麼、有幾問。明白符合加、減、乘、除的哪種算理,確定方法。確定需要幾步解答。

注意格式。小學三年級解答應用題的一般格式:算式、單位、答語。往往有些孩子因忘寫單位、忘寫答語而丟分。

注意特殊問題。如有餘數的,解答時既要寫余數又要寫商;和生活實際問題相關的,租車問題(有餘數時得數加1);載樹問題(兩頭都栽得數加1);有多餘條件的(不要給什麼條件都要用)。

數學題注意事項

善於挖掘隱含條件

題目中的隱含條件,有時對題目的條件進行補充或結果進行限制。審題時,善於挖掘隱含條件,還其廬山真面目,便為解題提供了新的信息與依據,解題思路也油然而生。

仔細審題

數學語言的表達往往是十分精確,並具有特定的意義。審題時,就要仔細看清題目的每一個字、詞、句,只有領會確切的含義,才能尋找解題的突破口,叩開解答之門。

善於「轉化」和「建模」

一道數學題目,在審題時應先把文字語言「轉化」為數學語言,並結合題意,建立數學模型、構造數學算式。

總之,審題時,一定要對題目中的文字語言反復推敲,提取信息,處理信息,獲取解題的途徑。

讓孩子培養好的審題習慣,提高審題能力,並在審題中學會動腦,才能提高分析問題解決問題的能力,還可以無形中培養孩子的嚴謹做題習慣,真的是受益良多。

『貳』 大學數學解題方法及步驟

導語:數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。下面就由我為大家帶來大學數學解題方法及步驟,大家一起去看看怎麼做吧!

一、配方法

配方法是對數學式子進行一種定向變形(配成"完全平方")的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用"裂項"與"添項"、"配"與"湊"的技巧,從而完成配方。有時也將其稱為"湊配法"。

最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解,或者缺xy項的二次曲線的平移變換等問題。

二、換元法

解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

三、待定系數法

要確定變數間的函數關系,設出某些未知系數,然後根據所給條件來確定這些未知系數的方法叫待定系數法,其理論依據是多項式恆等,也就是利用了多項式f(x)g(x)的充要條件是:對於一個任意的a值,都有f(a)g(a);或者兩個多項式各同類項的系數對應相等。

待定系數法解題的關鍵是依據已知,正確列出等式或方程。使用待定系數法,就是把具有某種確定形式的數學問題,通過引入一些待定的系數,轉化為方程組來解決,要判斷一個問題是否用待定系數法求解,主要是看所求解的數學問題是否具有某種確定的數學表達式,如果具有,就可以用待定系數法求解。例如分解因式、拆分分式、數列求和、求函數式、求復數、解析幾何中求曲線方程等,這些問題都具有確定的數學表達形式,所以都可以用待定系數法求解。

使用待定系數法,它解題的基本步驟是:

第一步,確定所求問題含有待定系數的解析式;

第二步,根據恆等的條件,列出一組含待定系數的方程;

第三步,解方程組或者消去待定系數,從而使問題得到解決。

如何列出一組含待定系數的方程,主要從以下幾方面著手分析:

①利用對應系數相等列方程;

②由恆等的概念用數值代入法列方程;

③利用定義本身的屬性列方程;

④利用幾何條件列方程。

比如在求圓錐曲線的方程時,我們可以用待定系數法求方程:首先設所求方程的形式,其中含有待定的系數;再把幾何條件轉化為含所求方程未知系數的方程或方程組;最後解所得的方程或方程組求出未知的系數,並把求出的系數代入已經明確的方程形式,得到所求圓錐曲線的方程。

四、定義法

所謂定義法,就是直接用數學定義解題。數學中的定理、公式、性質和法則等,都是由定義和公理推演出來。定義是揭示概念內涵的邏輯方法,它通過指出概念所反映的事物的本質屬性來明確概念。

定義是千百次實踐後的必然結果,它科學地反映和揭示了客觀世界的事物的本質特點。簡單地說,定義是基本概念對數學實體的高度抽象。用定義法解題,是最直接的方法,本講讓我們回到定義中去。

五、數學歸納法

歸納是一種有特殊事例導出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據一類事物中的部分對象具有的共同性質,推斷該類事物全體都具有的性質,這種推理方法,在數學推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象後歸納得出結論來。

數學歸納法是用來證明某些與自然數有關的數學命題的一種推理方法,在解數學題中有著廣泛的應用。它是一個遞推的數學論證方法,論證的第一步是證明命題在n=1(或n)時成立,這是遞推的基礎;第二步是假設在n=k時命題成立,再證明n=k+1時命題也成立,這是無限遞推下去的理論依據,它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達到無限。這兩個步驟密切相關,缺一不可,完成了這兩步,就可以斷定"對任何自然數(或n≥n且n∈N)結論都正確"。由這兩步可以看出,數學歸納法是由遞推實現歸納的,屬於完全歸納。

運用數學歸納法證明問題時,關鍵是n=k+1時命題成立的推證,此步證明要具有目標意識,注意與最終要達到的解題目標進行分析比較,以此確定和調控解題的方向,使差異逐步減小,最終實現目標完成解題。

運用數學歸納法,可以證明下列問題:與自然數n有關的恆等式、代數不等式、三角不等式、數列問題、幾何問題、整除性問題等等。

六、參數法

參數法是指在解題過程中,通過適當引入一些與題目研究的數學對象發生聯系的新變數(參數),以此作為媒介,再進行分析和綜合,從而解決問題。直線與二次曲線的參數方程都是用參數法解題的例證。換元法也是引入參數的典型例子。

辨證唯物論肯定了事物之間的聯系是無窮的,聯系的方式是豐富多採的,科學的任務就是要揭示事物之間的內在聯系,從而發現事物的`變化規律。參數的作用就是刻畫事物的變化狀態,揭示變化因素之間的內在聯系。參數體現了近代數學中運動與變化的思想,其觀點已經滲透到中學數學的各個分支。運用參數法解題已經比較普遍。

參數法解題的關鍵是恰到好處地引進參數,溝通已知和未知之間的內在聯系,利用參數提供的信息,順利地解答問題。

七、反證法

與前面所講的方法不同,反證法是屬於"間接證明法"一類,是從反面的角度思考問題的證明方法,即:肯定題設而否定結論,從而導出矛盾推理而得。法國數學家阿達瑪(Hadamard)對反證法的實質作過概括:"若肯定定理的假設而否定其結論,就會導致矛盾"。具體地講,反證法就是從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經證明為正確的命題等相矛,矛盾的原因是假設不成立,所以肯定了命題的結論,從而使命題獲得了證明。

反證法所依據的是邏輯思維規律中的"矛盾律"和"排中律"。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的"矛盾律";兩個互相矛盾的判斷不能同時都假,簡單地說"A或者非A",這就是邏輯思維中的"排中律"。反證法在其證明過程中,得到矛盾的判斷,根據"矛盾律",這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經證明為正確的命題都是真的,所以"否定的結論"必為假。再根據"排中律",結論與"否定的結論"這一對立的互相否定的判斷不能同時為假,必有一真,於是我們得到原結論必為真。所以反證法是以邏輯思維的基本規律和理論為依據的,反證法是可信的。

反證法的證題模式可以簡要的概括我為"否定→推理→否定"。即從否定結論開始,經過正確無誤的推理導致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是"否定之否定"。應用反證法證明的主要三步是:否定結論→推導出矛盾→結論成立。實施的具體步驟是:

第一步,反設:作出與求證結論相反的假設;

第二步,歸謬:將反設作為條件,並由此通過一系列的正確推理導出矛盾;

第三步,結論:說明反設不成立,從而肯定原命題成立。

在應用反證法證題時,一定要用到"反設"進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫"歸謬法";如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫"窮舉法"。

在數學解題中經常使用反證法,牛頓曾經說過:"反證法是數學家最精當的武器之一"。一般來講,反證法常用來證明的題型有:命題的結論以"否定形式"、"至少"或"至多"、"唯一"、"無限"形式出現的命題;或者否定結論更明顯。具體、簡單的命題;或者直接證明難以下手的命題,改變其思維方向,從結論入手進行反面思考,問題可能解決得十分乾脆。

『叄』 初中數學解答題答題技巧有哪些

數學在初中作為主科之一,是非常容易拉分的科目,那麼初中數學解答題答題技巧有哪些呢。以下是由我為大家整理的「初中數學解答題答題技巧有哪些」,僅供參考,歡迎大家閱讀。

初中數學解答題答題技巧有哪些

1. 計算題

應列式計算,體現運算關系,並按運算順序進行化簡,步驟寫完整,不能只寫答案;

2. 幾何證明題

觀察幾何圖形,從中分析出邊角間的關系. 應從已知條件出發,嚴密推理,步步有理有據. 證明過程應書寫簡練、思路清晰、邏輯嚴密、步驟完整;

3. 銳角三角函數的實際應用題

從題設中提取相關信息,合理地尋找直角三角形或作出合適的輔助線將其轉化為直角三角形模型,將已知和所求放在直角三角形中進行求解即可;

4. 一次方程和不等式及一次函數的實際應用題

要仔細審題、讀題,通過推敲題設中的關鍵詞(如:多、少、大於、小於、至少、不超過等),尋找等量關系建立方程或不等式是解題的關鍵;對於涉及一次函數的要注意通過分析題意列出函數關系式,再運用函數性質解題;

5. 類比、拓展探究題

此類題目一般第(1)問都比較簡單,考生在作答時盡可能把第(1)問做對,對於第(2)問和第(3)問,一般都會與第(1)問有一定的聯系,可通過分析第(1)問的解法,逐步推理求解;

6. 二次函數壓軸題

一般第(1)問求二次函數解析式是送分題,考生可節約時間快速作答,對於第(2),(3)問,一般會涉及到分類討論思想,學生做這兩問時,一定要考慮周全。

拓展閱讀:數學成績怎麼提升

主動預習

預習是主動獲取新知識的過程,有助於調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。

因此,要指乎注意培養自學能力,學會看書。如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

主動思考

很多同學在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應用所學的知識去解答問題。

主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什麼要這么定義,這樣解題的好處是什麼,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發對某些知識的興唯碧悉趣,更有助於學慧配習。

靠著老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!

拓寬解題思路

數學解題不要局限於本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以後的做題過程中就會有更多的選擇。

必須要有錯題本

說到錯題本不少同學都覺得自己的記憶力好,不需要錯題本就能記住,這是一種「錯覺」,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發現自己力不從心了。

錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助於提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。

『肆』 如何解答數學問題

如何解答數學問題?

方法步驟:

1、首先,要審清題干,明確你已知什麼,包括題干中給出了什麼具體信息,隱含信息。這樣你才知道你有什麼,這是你要得到什麼的基礎前提。帶著這樣的思路去分析問題,就是一種數學上由已知推未知的思路。數學其實本質上就是在做這樣的事情,不管是推理還是計算。

2、其次,要將題目進行推理轉化,類似於數學上的分析法。如我要吃飯,那我得先做飯或者買飯,做飯的話需要什麼材料需要什麼步驟,買飯的話需要多少錢買什麼東西。然後一直這樣追問下去,直到將問題的源頭和最終要解決的問題聯系起來,那麼就完成解決問題的思維過程,也就是轉化完畢。

3、將思維的過程從前到後整理成邏輯性的步驟。可以說第二步就是逆向思維的過程,這就是正向推導的邏輯推理。步驟要運用到最基本的推理,這些是你完成步驟最基本的保證。

注意事項

『伍』 怎麼分析數學題的解題思路

第一,從求解(證)入手——尋找解題途徑的基本方法遇到有一定難度的考題我們會發現出李攔題者設置了種種障礙。從已知出發,岔路眾多,順推下去越做越復雜,難得到答案,如果從問題入手,尋找要想獲得所求清核,必須要做什麼,找到「需知」後,將「需知」作為新的問題,直到與「已知「所能獲得的「可知」相溝通,將問題解決。事實上,在不等式證明中採用的「分析法」就是這種思維的充分體現,我們將這種思維稱為「逆向思維」——必要性思維。

第二,數學式子變形——完成解題過程的關鍵解答高考數學試題遇到的第二障礙就是數學式子變形。一道數學綜合題,要想完成從已知到結論的過程,必須經過大量的數學式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經歷,在解一道復雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,後悔莫及,埋怨自己怎麼糊塗到沒有把式子再這么變一下呢?

其實數學解題的每一步推理和運算,實質都是轉換(變形).但是,轉換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已答擾掘知,也就是創造條件向有利於解題的方向轉化.還必須注意的是,一切轉換必須是等價的,否則解答將出現錯誤。

解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規律性的東西需要總結。在後面的幾章中我們列舉的一些思維定勢,就是在數學思想指導下總結出來的。在解答高考題中時刻都在進行數學變形由復雜到簡單,這也就是轉化,數學式子變形的思維方式:時刻關注所求與已知的差異。

第三、回歸課本---夯實基礎。

1)揭示規律----掌握解題方法高考試題再難也逃不了課本揭示的思維方法及規律。我們說回歸課本,不是簡單的梳理知識點。課本中定理,公式推證的過程就蘊含著重要的方法,而很多考生沒有充分暴露思維過程,沒有發覺其內在思維的規律就去解題,而希望通過題海戰術去「悟」出某些道理,結果是題海沒少泡,卻總也不見成效,最終只能留在理解的膚淺,僅會機械的模仿,思維水平低的地方。因此我們要側重基本概念,基本理論的剖析,達到以不變應萬變。

『陸』 高中解答數學題的 方法 有哪些

我覺得,高中數學包含的內容多,板塊多,又各自交叉,形成一個龐大的知識結構體系。 首先要把一些基本的公式、單獨的知識點弄熟練,把一些難點、易錯點、一些公式的適用范圍,記清楚,能舉一反三,就好了。 一些基本的方法: (1)比如均值不等式的運用 (2)比如坐標系的運用, (3)分析法是從所求證的結果出發,逐步推出能使它成立的條件,直至已知的事實為止;分析法是一種「執果索因」的直接證法。 (4)綜合法是從已經證明的結論、公式出發,逐步推出所要求證的結論。綜合法是一種「由因導果」,敘述流暢的直接證法。 (3)分析法、 綜合法是證明數學問題的兩大最基本的方法。分析法「執果索因」的分析方法,思路清晰,容易找到解題路子,但書寫格式要求較高,不容易敘述清楚,所以分析法、綜合法常常交替使用。分析法、 綜合法應用很廣,幾乎所有題都可以用這兩個方法來解。 (5)反證法 反證法是數學證明的一種重要方法,因為命題p與它的否定非p的真假相反,所以要證一個命題為真,只要證它的否定為假即可。這種從證明矛盾命題(即命題的否定)為假進而證明命題為真的證明方法叫做反證法。 反證法證明的一般步驟是: 反設:假設命題的結論不成立,即假設結論的反面成立; 歸謬:從命題 解答高中數學題的10種方法 方法一、「內緊外松」,集中注意,消除焦慮怯場 集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。 方法二、調理大腦思緒,提前進入數學情境 考前要摒棄雜念,排除干擾思緒,使大腦處於「空白」狀態,創設數學情境,進而醞釀數學思維,提前進入「角色」,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。 方法三、沉著應戰,確保旗開得勝,以利振奮精神 良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生「旗開得勝」的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的「門坎效應」,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。 方法四、「六先六後」,因人因卷制宜 在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。 1.先易後難。就是先做簡單題,再做綜合題,數沒應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。 2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法桐告,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。 3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有局畢明利於提高單位時間的效益。高考題一般要求較快地進行「興奮灶」的轉移,而「先同後異」,可以避免「興奮灶」過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力, 4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗 5.先點後面。近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面 6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」,以增加在時間不足前提下的得分。 方法五、一「慢」一「快」,相得益彰 有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的「基礎工程」,題目本身是「怎樣解題」的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。 方法六、講求規范書寫,力爭既對又全 考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、「感情分」 也就相應低了,此所謂心理學上的「光環效應」。「書寫要工整,卷面能得分」講的也正是這個道理。 方法七、確保運算準確,立足一次成功 數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從「數量」上,而且從「性質」上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。 方法八、面對難題,講究方法,爭取得分 會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。 1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。 2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為「已知」,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。 方法九、以退求進,立足特殊 發散一般對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對「特殊」的思考與解決,啟發思維,達到對「一般」的解決。 方法十、執果索因,逆向思考,正難則反 對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。 希望能幫到你,祝學習進步。

『柒』 怎麼總結數學解題方法和技巧

很多初中生難於掌握解題技巧而覺得學習初中數學很困難,實際上數學是有很多解題技巧的,下面我就為大家總結一下,僅供大家參考。

初中數學巧取特殊值,以簡代繁
初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。

如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其煩甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。

初中數學的常見解題方法
直接推演法:直接從命題給出的條件出發,運用概念,公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代人條件中去驗證,找出正確答案.此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法。

特值法:用合適的特殊元素(如數或圖形)代人題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法。

初中生都知道的數學解題技巧
排除、篩選法;對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

分析法:直接通過對選擇題的條件和結論,作詳盡地分析、歸納和判斷,從而選出正確的結果,稱為分析法。

整體代入法:把某一代數式進行化簡,然後並不求出某個字母的取值,而是直接把化簡的結果作為一個整體代入。

以上就是我為大家總結的初中數學解題技巧,僅供大家參考,希望對大家有所幫助。

『捌』 數學做題的方法及技巧

數學做題的方法及技巧

數學做題的方法及技巧,數學一直都是令許多學生頭疼的科目,在考試中我們只能盡量做到不會做的題目也能得分,甚至蒙出正確的答案,只要掌握一定的數學答題技巧,也是有可能實現的,接下來一起看看數學做題的方法及技巧。

數學做題的方法及技巧1

一、熟悉習題中所涉及的內容,包括定義、公式、定理和規則。

解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。

因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。

二、熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。

有時候,我們遇到一道不會做的習題,不是我們沒有學會現在汪段所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。

這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

三、熟悉基本的解題步驟和解題方法。

解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

數學做題的方法及技巧2

選擇題蒙法

1、選擇題出現數值的選項中,含最多相同數值的選項為正確答案。如四個選項:A、3 B、3/11 C、3/13 D、2/11。「3」和「11」出現的次數最多,故選選項B。

2、選擇題出現數值的選項中,數值最大的和數值最小的一般不是正確選項,答案從中間數值的兩個選項中選。

3、選擇題出現正負數值的選項中,答案必定是那兩個選項的其中之一。

4、選擇題中,若出現概念題。如果有課外的或是課內很少見的說法,一般都是正確的說法。

5、選擇題,不會連續出現3個相同的答案。一般而言,選項A出現的概率最低。而且,第一題和最後一題一般不為選項A,最後兩道題多為選項B和選項C。

填空題蒙法

1、如果出現求長度或者求角度的選擇題,並且試卷上有圖像的。可以直接用刻度尺或者量角器去衡量。

2、有關線性規劃的選擇題,不用畫圖,直接計算。用時更短,准確率更高!

3、遇上求數值、實在不會做的選擇題。如果明顯是整數答案的,可以選寫「0、1、-1」中的其中一個數值;如果明顯是分數答案的.,可以選寫「1/2、1/3、2/3」中的其中一個數值;如果明顯是含根號值數答案的,可以選寫「根號2、根號3「等簡單的數值。

4、一般來說,題目復雜難懂的,答案的數值往往是很簡單的。反之就是比較茄陵拆復雜的。

解答題蒙法

1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)

2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證顫棗明出來也可以用!)

3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)

4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。

5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)

數學做題的方法及技巧3

數學答題技巧

1.適用條件

[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大於1。

註:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。

2.函數的周期性問題(記憶三個)

(1)若f(x)=-f(x+k),則T=2k;

(2)若f(x)=m/(x+k)(m不為0),則T=2k;

(3)若f(x)=f(x+k)+f(x-k),則T=6k。

注意點:a.周期函數,周期必無限b。周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。

3.關於對稱問題(無數人搞不懂的問題)總結如下

(1)若在R上(下同)滿足:f(a+x)=f(b-x)恆成立,對稱軸為x=(a+b)/2

(2)函數y=f(a+x)與y=f(b-x)的圖像關於x=(b-a)/2對稱;

(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關於(a,b)中心對稱

4.函數奇偶性

(1)對於屬於R上的奇函數有f(0)=0;

(2)對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項

(3)奇偶性作用不大,一般用於選擇填空

5.數列爆強定律

(1)等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);

(2)等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

(3)等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立

(4)等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q

6.數列的終極利器,特徵根方程

首先介紹公式:對於an+1=pan+q(n+1為下角標,n為下角標),

a1已知,那麼特徵根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特徵根方程的運用。

二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)

『玖』 初中數學解題技巧

導語:初中數學解題技巧推薦。學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。

初中數學解題技巧推薦

一、答題原則

大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。

答題時,一般遵循如下原則:

1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易後難,先選擇、填空題,後解答題。

2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。

3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。

4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。

5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。

6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 “前緊後松”而不是“前松後緊”。特別注意只能在規定位置答題,轉頁答題不予計分。

二、審題要點

審題包括瀏覽全卷和細讀試題兩個方面。

一是開考前瀏覽。 開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。

二是答題過程中的仔細審題。 這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。

1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。

2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“後果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。

3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。

三、時間分配

近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目中應有“分數時間比”的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。

在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。

在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的'心理壓力,而影響正常答卷。

一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。

五、大題和難題

一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。

六、各種題型的解答技巧

1.選擇題的答題技巧

(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。

(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。

(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。

2.填空題答題技巧

(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。

3.解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

七、如何檢查

在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。

檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。

選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。

對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。

計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較“像”,這里所說的“像”是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做

八、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。

同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:

1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。

2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。

3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。

初中數學解題技巧推薦

首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。

你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。

第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。

例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

第三,對基本的解題步驟和解題方法也要熟悉。

解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

第四,要學會歸納總結。

在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。

第五,應先易後難,逐步增加習題的難度。

人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。

比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。

第六,認真、仔細地審題。

對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。

第七,學會畫圖。

畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。

『拾』 數學解題格式

分享填空題和解答題的數學解題格式

1.關於填空題:

《考試說明》中對解答填空題提出的要求是"正確、合理、迅速",因此,解答的基本策略是:快——運算要快,力戒小題大做;穩——變形要穩,防止操之過急;全——答案要全,避免對而不全;活——解題要活,不要生搬硬套;細——審題要細,不能粗心大意。

關於填空題,常見錯誤或不規范的答卷方式有:字跡不工整、不清晰、字元或字母的書寫不規范或不正確等,等號與不等號沒寫就直接寫數據;計算或化簡沒寫最後結果;列代數式沒化簡;漏寫單位;方程的解沒寫"x =";函數表達式漏寫"y =",因式分解不徹底等。

閱讀全文

與解答題數學怎麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1344
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:879
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1017
win7如何刪除電腦文件瀏覽歷史 瀏覽:1049
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1693
西安瑞禧生物科技有限公司怎麼樣 瀏覽:956
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1645
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053