① 初一數學論文怎麼寫
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題譽手集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊兆猜,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開慶猜嫌,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
② 初一數學小論文怎麼寫
「寫什麼?怎樣寫?」這是每個學寫小論文的同學都會碰到的問題。一篇好論文的產生,對於它的作者來說是一次創造性的勞動。創造性的勞動對勞動者的要求是很高的。其創作的素材、水平,乃至創作的靈感……,絕不是輕易可以得到的,它們需要作者在自己的學習與生活實踐中,去進行長期的積累與思考。從我校徵集的論文來看,作者中有的是在平時十分注意對課本知識進行歸納整理、拓展延伸,學習中有許多意想不到的收獲;有的是從課外閱讀中得到收獲與啟發後,獲得靈感、得以選題;……更有甚者是,有的作者在生活中發現問題注意觀察、探究,並與自己的數學學習相聯系,對觀察、探究的結果進行思考、歸納、總結,升華為理論,寫出了令人叫絕的掘源好論文。綜觀獲獎論文的小作者們,他們大多是數學學習的有心人。好論文的作者不僅要有較好的數學感悟,還要有良好的文學修養、綜合素養。 寫小論文的關鍵,首先就是選題,大家的選題要從自己最熟悉的、最想寫的內容入手。 下面我結合我校同學部分獲獎論文的選題,進行一點簡單的選題分析。 論文按內容分類,大概有以下幾種: ①勤於實踐,學以致用,對實際問題建立數學模型,再利用模型對問題進行分析、預測; 如:探究大橋的熱脹冷縮度 ②對生活中普遍存在而又擾人心煩的小事,提出了巧妙的數學方法來解決它; 如: 一台飲水機創造的意想不到的實惠 ③對數學問題本身進行研究,探索規律,得出了解決問判伍態題的一般方法 如: 分式「家族」中的親緣探究 如: 紙飛機里的數學 ④對自己數學學習的某個章節、或某個內容的體會與反思 如: 「沒有條件」的推理 如: 小議「黃金分割」 如: 奇妙的正五角星 ① 課題要小而集中,要有針對性; ② 見解要真實、獨特,有感而橘沖發,富有新意; ③ 要用自己的語言表述自己要表達的內容 (四) 評價數學小論文的標准 什麼樣的數學小論文算是好的論文呢?標准很多,但我以為一篇好的數學小論文必須有以下三個特徵——新、真、美。「新」,指的就是選題要有獨特的視角,寫的內容不是簡單地重復別人的東西、不是單純地下載一段。文字,最好是自己原創的,至少要有自己的創造、自己的觀點,屬於自己的思想;「真」,指的就是內容要實在、言之有理,既不能空洞無味、也不能冗長拖沓,文章要緊扣主題,力求做到准確、精練,盡量地體現數學的嚴謹性與科學性;「美」,指的就是語言通順、文筆流暢,文章要給人以美的享受。當然,從第二屆時代數學學習「時代之星」實踐與創新論文大賽的名稱來看,既有實踐又有創新的論文肯定更容易受到評委們的親睞,所以,我希望同學們更加貼近生活、注意觀察、去尋找、去發現,把生活與數學聯系起來,把學習撰寫論文、爭取寫出好的論文,作為對自己數學學習的一種評價、一種補充、一種提高,這樣你學寫小論文的目的就對了,你就會將數學小論文越寫越好。 「梅花香自苦寒來」,只要肯下大工夫、只要肯吃的起苦,不斷地去思考、去揣摸,去學習,好的數學論文就一定會在你的手中誕生。總之,學習撰寫論文、爭取寫出好的論文,對於我們每一位同學來說,始終是一個鍛煉自己、提高能力的極好的方式。我相信我校初一、初二的同學們一定會在老師的組織與指導下積極參與第二屆《時代數學學習》「時代之星」實踐與
③ 七年級數學小論文怎麼寫
數學小論文的幾種具體寫法
數學小論文通過學生對生活中數學問題的觀察和發現,引起學生的好奇心和求知慾,使學生體會到數學貼近他們的生活,從而對數學產生親切感,激發起他們學習數學的熱情和興趣;通過引導學生對課堂中學習的數學知識進行實踐運用,讓學生感受到數學的實用性,提高數學學習的實效;通過探究趣味題和智慧題,開拓學生的視野,培養學生思維的靈活性和深刻性。現談談數學小論文的幾種具體寫法
1. 一道數學題的解答。主要是學生對某一道有挑戰性的題目簡便的或與眾不同的解法(包括一題多解)。例如,書後的思考題,奧數題,教師或家長布置的智慧題,數學刊物上的挑戰題,平時自己在做題時遇到的有一定難度的題目等。學生通過對這些問題的解決,不但發展了思維,而且體驗到一種強烈的成就感,這對他以後數學的學習將是一個巨大的動力。
2. 用數學的眼光去分析現實問題。主要指學生用數學的眼光去觀察、計算、分析現實問題,獲得一種理性的思考。比如,有學生寫道:如果每人每天節約1克水,那全國13億人口每天可以節約1 300噸水,發出了「人人節約一滴水,沙漠也能變綠洲」的感慨!還有學生寫道:如果每個去銀行儲蓄的人每次都能為「希望工程」捐1角錢的話,全國那麼多儲蓄點捐到的錢可以資助多少貧困學生實現上學的夢想呀!學生能從這些角度通過數學的計算去思考社會意義,它的價值就能遠遠超過數學研究本身。
3. 生活中的數學問題。主要用來記錄學生在生活中遇到的感興趣並有親身體驗的有關數學的情境記錄。寫這種數學小論文的題材特別多,比如,有學生寫到了人民幣為什麼只有1元、2元、5元而沒有3元、4元、6元、7元、8元、9元的;再如,有學生寫到了他家住的樓房每層有24級樓梯,那麼他從1樓到5樓要爬多少級樓梯。這些都是生活中每天要經歷的很平常的事,但學生一旦用數學的眼光來觀察和思考這些看似平常的生活問題,就在數學和生活之間架起了一座橋梁,能夠感受到生活中處處有數學。
4. 課堂上的數學問題。主要指學生在課堂數學學習過程中自己的一些思考和發現。這對學生數學學習非常有幫助,比如,有個學生在學習畫三角形的高時,發現書上介紹了銳角三角形和直角三角形的三條高,而鈍角三角形只介紹了一條高。她在課後通過自己的思考和嘗試,畫出了鈍角三角形的另外兩條高,在得到老師的肯定後,欣喜萬分,連忙寫下了《我發現了鈍角三角形的另外兩條高》這篇數學小論文。
5. 數學實踐活動中遇到的問題。主要指學生通過自己親自動手實踐,在實踐活動的過程中產生的疑惑、獲得的啟示和得到的結論等。比如,有個學生在教師還沒有上實踐活動課「可能性」之前,自己看書並根據書上的內容用紅、藍鉛筆去摸,自己動手去探索並驗證規律,事後寫了一篇心得體會,寫出了她在動手實踐過程中的想法和體會,讓她覺得其樂無窮。
6. 數學童話。主要指學生發揮豐富的想像力,用童話的形式(其中包含著數學論述)來記錄看到的數學世界。這是語文學科和數學學科一種很好的整合,那種獨特的視角,生動的語言描述,讓教師耳目一新。
④ 數學論文怎麼寫初中
初中數學論文寫法如下:
1、論文撰寫之前需要先確定選題,但是由於初中數學論文的主要針對的是十幾歲的孩子,受年齡和所接受的教育的限制,絕大多數學生對數學領域的專業知識並並不是很了解,因此在選擇初中數學論文選題時,可以結合實際生活,選擇比較貼近生活的題目,例如勾股定理在生活中應用、生活中的數學現象等等,不建議選擇過於抽象的題目。
論據的鋪列和論證的展開一個部分,參考文獻必須是已經公開發表的文獻,在列參考文獻的時候並不是越多越好,必須精心篩選,看重文獻質量而非數量。
⑤ 七年級的數學論文怎麼寫要結合生活實際
1、論文的組成
數學論文主要由標題、摘要、前言、正文、結論、參考文獻等部分組成。
標題就是論文的總題目,是文章基本內容的縮影,古人雲:「立片言以居要,乃全篇之警策。」所以擬定標題應該力求簡短、明確、質朴、醒目,既要防止太冗長,又要避免太概括,使人不明了;既要防止文不對題或過於陳舊,又要避免追求新穎、空泛而沒有實際的內容。
摘要一般包括本課題研究的意義,研究的內容與方法,研究的成果或價值等,便於讀者迅速了解全文的概貌。所以摘要應簡明扼要,引人入勝,內容全面,重點突出,且能獨立使用。
前言也稱引言或緒言,一般包括本課題研究的背景或起點,需要研究的問題,研究的方法、手段,研究的意義或價值。需要注意的是,對研究的意義或價值應力求實事求是,既不可拔高,也不可貶低或過分謙虛。
正文是論文的主體,作為表達作者個人研究成果的部分,所佔篇幅較大,有時還必須輔以必要的小標題,應力求概念清晰,論點明確,論證嚴密,論據充分,具有科學性、准確性和創新性,同時條理要清楚,文字應通俗簡明。
結論是對正文中所分析論證的問題加以綜合,概括出基本點,這是課題解決的答案。結論作為理論分析和實驗的邏輯發展,是論述的概括集中和升華,由局部到一般,由具體事實、經驗,上升到理論概括,是整篇論文的歸宿,所以應力求完整、准確、鮮明,還應如實指出本理論的使用范圍和成果的意義,以及本文尚未解決的問題和繼續研究的方向。
參考文獻是反映作者嚴肅的科學態度和研究工作的依據,其中包括撰寫該論文所參考的書籍'期刊。
2、小學數學論文的撰寫過程
第一步,選題、選材。
要想寫什麼內容的文章,無論是理論探討方面,還是教材教法方面和解題方法技巧方面,以及教學經驗總結方面,對闡述問題的深度、廣度等,要心中有數,具有明確的目的性和主題性。
無論選擇哪方面的內容與具體題材,都必須力求具有先進性、針對性和實踐性,要想做到這一點,首先,根據文獻檢索方法,盡可能多地查閱資料,掌握國內外最新研究動態。其次,深入鑽研這些文獻資料,看看能否得到進一步啟發,有無新的見解。盡管選題可能重復,類似的題材較多,但也可以從不同側面結合不同實例,根據不同對象寫出一定的新意來,使觀點更明確,方法更有效,使其先進性、針對性、實用性更強。第三,選題要從實際出發,題目大小、題材的深度和廣度要恰當。
第二步,擬綱、執筆。
論文選題確定後,就要注意寫好提綱,這是寫好文章的基礎。首先,要將內容、結構布局好,要擬定一個寫作提綱,准備分幾個部分,各個部分集中講幾個問題,這些部分與問題之間的關系如何,都需要進一步精心設計,使其結構嚴謹、層次分明,具有科學性、邏輯性。其次,要注意各種文章的特點。寫理論性的文章,最好能再確定大小標題,敘述上力求論點明確,可信度強,便於別人借鑒;寫教材分析方面的文章,應進行比較,提出改進意見或提示值得深入研究的問題等。
第三步,修改、定稿。
修改是文章初稿完成後的一個加工過程,它包括對論文文字的修飾,以及科學性的推敲等。論文初稿形成後,應從頭至尾反復地閱讀,逐句逐段推敲,審核一下文中的論點是否明確,論據是否充分,論證是否合理,結構是否嚴謹,計算是否正確等。一篇好的小學數學論文,應該是數文並茂。就是說,既要有好的數學內容,又要有好的文字表達。所以,文字的工夫對數學論文來說很為重要。數學論文,貴在朴實,少用浮詞,免得沖淡文章的中心,文字應通俗易懂,簡明扼要,用詞應准確簡煉,表達完整,特別是中心內容一定要闡述透徹清楚。此外,書寫要規范,題號、圖號、標點也要正確。修改是一項細致的工作,只有對文稿反復推敲、修改,才能消除不應有的錯誤。只有經過反復修改加工,文章的質量才會提高。
希望對你有用!
⑥ 完整的初中數學論文怎麼寫
初中數學實踐性活動課的重要性及開設方法分析
⑦ 初一數學論文怎麼寫
範文一篇:著名數學家華羅庚說過:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日月之繁,無處不用到數學."特別是二十一世紀的今天,數學的應用更是無所不在.那麼,我們如何從小打下堅實的數學基礎,究竟什麼樣的課堂教學才適合新一代的學生呢 我認為,在課堂中,由學生去擔任學習的主角,才是我們的心願.那麼,數學活動課就是讓我們充分體現自主學習的一種教學方式.
活動課上,在老師的指導下,我們分成小組,通過自己動手去測量,拼湊,剪切,計算,去探索發現的規律,掌握數學知識.這樣,即培養了我們的動手能力,又提高了我們的思維能力,而且讓我們初步嘗到了數學家研究問題成功時的滋味,使我們對數學的學習興趣倍增.
例如,我們上《平行四邊形面積得計算》這節課時,老師讓我們分成幾個小組,發一些平行四邊形的小紙片,讓同學們互相討論,怎樣使一個平行四邊形經過剪貼,拼湊變成一個我們已經會計算面積的圖形呢 大家七嘴八舌的討論開了,有的同學發現可以用剪刀沿著平行四邊形的高,把它剪成一個直角三角形和一個直角梯形,然後可以把它們拼成一個長方形;一些同學又發現還可以從平行四邊形的任意一條高剪開,就得到兩個直角梯形,依然可以拼成一個同樣大小的長方形.同學們通過觀察,思考,認識到拼成的長方形的"長"和"寬",分別就是原來平行四邊形的"底邊"和"高".由此,大家終於自己找到了平行四邊形面積公式為:S=ah.再比如,上《有餘數的除法》這節課時,老師採用讓同學們玩撲克牌的游戲,使大家很快理解和掌握了有餘數的除法的計算規律,讓大家在輕松愉快的活動中學到知識.
我每次做數奧都是拿起一道題拉起來就做,因為我覺得這樣做起來很快.可是今天做數奧時,有一道題改變了我的看法,做得快不一定是做得對,主要還是要做對.
今天,我做了一道題目把我難住了,我苦思冥想了好幾個小時都沒有想出來,於是我只好乖乖地去看基礎提煉,讓它來幫我分析.這道題目是這樣的:求3333333333的平方中有多少個奇數數字 分析是這樣的:3333333333的平方就是3333333333×3333333333,這道乘法算式由於數字太多使計算復雜,我們可以運用轉化的方法化繁為簡,也就是把一個因數擴大3倍,另一個因數縮小3倍,積不變.使題目轉化為求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘積中有十個奇數數字.這道題,我們還可以位數少的兩個數相乘算起,就能發現積中奇數的數字個數.即3×3=9→積中有1個奇數數字.33×33=1089→積中有2個奇數數字.333×333=110889→積中有3個奇數數字.3333×3333=11108889→積中有4個奇數數字.……
從上面試算中,容易發現積是由1,0,8,9四個數字組成的,1和8的個數相同,比一個因數中的3的個數少1,0和9各一個,分別在1和8的後面.積中奇數的數字個數與一個因數中3的個數相同,可以推導出原題的積是:11111111108888888889,積中有10個奇數數字.
做了這道題,我知道做數奧不能求快,要求懂它的方法.總之,我認為用活動課的方式上數學課,是我們小學生非常喜歡的.在課堂上,每個同學對知識的探索過程充滿了好奇心,都迫切渴望通過自己的實驗活動,去找到解決問題的方法.學習中,我們充分體驗套了做學習的主人的快樂和自豪.希望老師們能多用活動課的方式來上數學課.這樣,我們將會學的更扎實,更輕松,更靈活,更優秀.
⑧ 初一數學的小論文怎麼寫!!急求!400字以上!!
數學小論文一
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其洞吵絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有租掘限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是弊顫核很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
數學小論文三
數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。
祝:學習進步!
⑨ 數學小論文 初一怎麼寫
數學是一切科學之母"、"數學是思維的體操",它是一門研究數與形的科學,它不處不在。要掌握技術,先要學好數學,想攀登科學的高峰,更要學好數學。
數學,與其他學科比起來,有哪些特點?它有什麼相應的思想方法?它要求我們具備什麼樣的主觀條件和學習方法?本講將就數學學科的特點,數學思想以及數學學習方法作簡要的闡述。
一、數學的特點(一)
數學的三大特點嚴謹性、抽象性、廣泛的應用性所謂數學的稿凳嚴謹性,指數學具有很強的邏輯性和較高的精通性,一般以公理化體系來體現。
什麼是公理化體系呢?指得是選用少數幾個不加定義的概念和不加邏輯證明的命題為基礎,推出一些定理,使之成為數學體系,在這方面,古希臘數學家歐幾里得是個典範,他所著的《幾何原本》就是在幾個公理的基礎上研究了平面幾何中的大多數問題。在這里,哪怕是最基本的常用的原始概念都不能直觀描述,而要用公理加以確認或證明。
中學數學和數學科學在嚴謹性上還是有所區別的,如,中學數學中的數集的不斷擴充,針對數集的運算律的擴充並沒有進行嚴謹的推證,而是用默認的方式得到,從這一點看來,中學數學在嚴謹性上還是要差很多,但是,要學好數學卻不能放鬆嚴謹性的要求,要保證內容的科學性。
比如,等差數列的通項是通過前若干項的遞推從而歸納出通項公式,但要予以確認,還需要用數學歸納法進行嚴格的證明。
數學的抽象性表現在對空間形式和數量關系這一特性的抽象。它在抽象過程中拋開較多的事物的具體的特性,因而具有十分抽象的形式。它表現為高度的概括性,仿慎並將具體過程符號化,當然,抽象必須要以具體為基礎。
至於數學的廣泛的應用性,更是盡人皆知的。只是在以往的教學、學習中,往往過於注重定理、概念的抽象意義,有時卻拋卻了它的廣泛的應用性,如果把抽象的概念、定理比作骨骼,那麼數學的廣泛應用就好比血肉,缺少哪一個都將影響數學的完整性。高中數學新教材中大量增加數學知識的應用和研究性學習的篇幅,就是為了培養同學們應用數學解決實際問題的能力。
二、高中數學的特點往往有同學進入高中以後不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。為什麼會這樣呢?讓我們先看看高中數學和初中數學有些什麼樣的轉變吧。
1、理論加強2、課程增多3、難度增大4、要求提高三、掌握數學思想高中數學從學習方法和思想方法上更接近於高等數學。學好它,需要我們從方法論的高度來掌握它。我們在研究數學問題時要經常運用唯物辯證的思想去解決數學問題。數學思想,實質上就是唯物辯證法在數學中的運用的反映。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,初步公理化思想,數形結合思想,運動思想鍵大旅,轉化思想,變換思想。
例如,數列、一次函數、解析幾何中的直線幾個概念都可以用函數(特殊的對應)的概念來統一。又比如,數、方程、不等式、數列幾個概念也都可以統一到函數概念。
再看看下面這個運用"矛盾"的觀點來解題的例子。
已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。
分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1①;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。
x=(x0+2)/2 ②y=y0/2 ③顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。
數學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什麼途徑?就是在數學思想方法的指導下的普遍性問題。
有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難於使數學學習進入更高的層次,會為今後進入大學深造帶來很有麻煩。
在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
要打贏一場戰役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰術和策略問題。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。一般地,在解題中所採取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。
中學數學中經常用到的數學思維策略有:
以簡馭繁、數形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔如果有了正確的數學思想方法,採取了恰當的數學思維策略,又有了豐富的經驗和扎實的基本功,一定可以學好高中數學。
四、學習方法的改進身處應試教育的怪圈,每個教師和學生都不由自主地陷入"題海"之中,教師拍心某種題型沒講,高考時做不出,學生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學習方法的培養,每個學生都有自己的方法,但什麼樣的學習方法才是正確的方法呢?是不是一定要"博覽群題"才能提高水平呢?
現實告訴我們,大膽改進學習方法,這是一個非常重大的問題。
(一)
學會聽、讀我們每天在學校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對不對呢?
讓我們從聽(聽講、課堂學習)和讀(閱讀課本和相關資料)兩方面來談談吧。
學生學習的知識,往往是間接的知識,是抽象化、形式化的知識,這些知識是在前人探索和實踐的基礎上提煉出來的,一般不包含探索和思維的過程。因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內容是什麼?怎麼分析?理由是什麼?採用什麼方法?還有什麼疑問?只有這樣,才可能對教學內容有所理解。
聽講的過程不是一個被動參預的過程,在聽講的前提下,還要展開來分析:這里用了什麼思想方法,這樣做的目的是什麼?為什麼老師就能想到最簡捷的方法?這個題有沒有更直接的方法?
"學而不思則罔,思而不學則殆",在聽講的過程中一定要有積極的思考和參預,這樣才能達到最高的學習效率。
閱讀數學教材也是掌握數學知識的非常重要的方法。只有真正閱讀和數學教材,才能較好地掌握數學語言,提高自學能力。一定要改變只做題不看書,把課本當成查公式的辭典的不良傾向。閱讀課本,也要爭取老師的指導。閱讀當天的內容或一個單元一章的內容,都要通盤考慮,要有目標。
⑩ 初一數學小論文怎麼寫
初一數學小論文
今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實也是一道有些復雜的找規律題目,題目是這樣的「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡猛然想到,這題目必須得按照規律來做!!!
想法一:開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了!
想法二:我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法!
想法三:我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。
我做的只是其中的三種解法,其實方法還有很多,但是要靠自己來找其中的規律,解其中的奧秘!
數學小論文:《容易忽略的答案》
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正確答案應該是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。
在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。