導航:首頁 > 數字科學 > 怎麼解數學方程式

怎麼解數學方程式

發布時間:2023-03-24 03:14:08

『壹』 數學解方程有幾種方法

1、估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。

2、應用等式的性質進行解方程。

3、合並同類項:使方程變形為單項式

4、移項:將含未知數的項移到左邊,常數項移到右邊

例如:3+x=18

解:x=18-3

x=15

5、去括弧:運用去括弧法則,將方程中的括弧去掉。

4x+2(79-x)=192

解: 4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

x=17

6、公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。

7、函數圖像法:利用方程的解為兩個以上關聯函數圖像的交點的幾何意義求解。

(1)怎麼解數學方程式擴展閱讀

解方程依據

1、移項變號:把方程中的某些項帶著前面的符號從方程的一邊移到另一邊,並且加變減,減變加,乘變除以,除以變乘;

2、等式的基本性質

性質1:等式兩邊同時加(或減)同一個數或同一個代數式,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式。

(1)a+c=b+c

(2)a-c=b-c

性質2:等式的兩邊同時乘或除以同一個不為0的數,所得的結果仍是等式。

用字母表示為:若a=b,c為一個數或一個代數式(不為0)。則:

a×c=b×c 或a/c=b/c

性質3:若a=b,則b=a(等式的對稱性)。

性質4:若a=b,b=c則a=c(等式的傳遞性)。

『貳』 小學方程式怎麼解 數學

小學數學解方程如下:

1、有分母先去分母。

2、有括弧就去括弧。

3、需要移項就進行移項。

4、合並同類項。

5、系數化為1求得未知數的值做液。

6、開頭要寫「解」。

使方程左右兩邊相等的未知數的值,叫做方程的解。求方程全部的解或判斷方程無解的過程叫做解方程。必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。

方程的分類:

1、一元二次方程

就是關於平方的方程。

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:1、直接開平方法;2、配方法;3、公式法;4、分解因式法。

2、一元陵汪三次方程

就是關於立方的方程。

一元三次方程的求根公式用通常的演繹思維是作不出來的,用類似解一元二次方程的求根公式的配方法只能將型如ax^3+bx^2+cx+d=0的標准型一元三次方程形式化為x^3+px+q=0的特殊型。

不少學生一提到解方程就苦惱,其實只要掌握了技巧,解方程並沒有那麼難。那麼小學數學解方程的方法與技巧有哪些呢?

1、 我們可以把課本中出現的方程分為三大類:一般方尺胡仔程、特殊方程和稍復雜的方程。

2、 形如:x+a=b, x-a=b, ax=b, x÷a=b這幾種方程,我們可以稱為一般方程。

3、 形如:a-x=b,a÷x=b這兩種方程,我們可以稱為特殊方程。

4、 形如:ax+b=c, a(x-b)=c這兩種方程,我們可以稱為稍復雜的方程。

5、 對於一般方程,如果方程是加上a,在利用等式的性質求解時,可以在方程兩邊同時減去a;同樣地,如果方程是減去a,在利用等式的性質求解時,可以在方程的兩邊同時加上a。乘和除也是一樣,總結為一句話就是一般方程很簡單,具體數字幫你辦,加減乘除要相反。

6、 對於特殊方程,減去和除以的都是未知數x。求解時,減去未知數那就加上未知數,除以未知數那就乘未知數,這樣方程就變換成了一般方程,總結起來就是特殊方程別犯難,減去除以未知數,加上乘上變一般。

7、 對於稍復雜的方程,可以採用「舍遠取近」的方法,意思是離未知數x遠的先去掉,離未知數x近的先看成整體保留,通過變換,方程就變得簡單,一目瞭然。總結起來就是若遇稍微復雜點,舍遠取近便瞭然。

當然,還有形如ax+bx=c等形式,能夠學會上面這幾種,對於學生來說,這些方程就顯得輕而易舉了。

『叄』 解方程怎麼解

使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。

方法⒈估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。⒉應用等式的性質進行解方程。⒊合並同類項:使方程變形為單項式⒋移項:將含未知數的項移到左邊,常數項移到右邊例如:

不過,x不一定放在方程左邊,或一個方程式子里有兩個x,這樣就要用數學中的簡便計算方法去解決它了。有些式子右邊有x,為了簡便算,可以調換位置。

『肆』 解方程有幾種方法

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法: 1、直接開平方法;2、配方法;3、公式法;4、因式分解法。 1、直接開平方法: 直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)^2;=n (n≥0)的 方程,其解為x=±√n+m . 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11 分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)^2;,右邊=11>0,所以此方程也可用直接開平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丟解符號) ∴x= ﹙﹣1±√7﹚/3 ∴原方程的解為x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3 (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解為x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先將常數c移到方程右邊:ax^2+bx=-c 將二次項系數化為1:x^2+b/ax=- c/a 方程兩邊分別加上一次項系數的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左邊成為一個完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚² 當b²-4ac≥0時,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(這就是求根公式) 例2.用配方法解方程 3x²-4x-2=0 解:將常數項移到方程右邊 3x²-4x=2 將二次項系數化為1:x²-﹙4/3﹚x= ? 方程兩邊都加上一次項系數一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )² 配方:(x-4/6)²= ? +(4/6 )² 直接開平方得:x-4/6=± √[? +(4/6 )² ] ∴x= 4/6± √[? +(4/6 )² ] ∴原方程的解為x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ . 3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b²-4ac的值,當b²-4ac≥0時,把各項系數a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x²-8x=-5 解:將方程化為一般形式:2x²-8x+5=0 ∴a=2, b=-8, c=5 b²-4ac=(-8)²-4×2×5=64-40=24>0 ∴x=[(-b±√(b²-4ac)]/(2a) ∴原方程的解為x?=,x?= . 4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解鎮滲成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩肆世個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x²+3x=0 (3) 6x²+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學) (1)解:(x+3)(x-6)=-8 化簡整理得 x2-3x-10=0 (方程左邊為二次三項式,右邊為零) (x-5)(x+2)=0 (方程左邊分解因式) ∴x-5=0或x+2=0 (轉化成兩個一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法將方程左邊分解因式) ∴x=0或2x+3=0 (轉化成兩個一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原裂旅肢方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小結: 一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數。 直接開平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。 配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定系數法)

『伍』 方程式怎麼解

解方程的步驟:

⑴有分母先去分母。

⑵有括弧就去括弧。

⑶需要移項就進行移項。

⑷合並同類項。

⑸系數化毀神為1求得未知數的值。

⑹ 開頭要寫「解」。

例如:

4x+2(79-x)=192

解:

4x+158-2x=192

4x-2x+158=192

2x+158=192

2x=192-158

2x=34

x=17

(5)怎麼解數學方程式擴展閱讀:

解方程就是求出方程中所有未知數的值的過程。方程一定是等式,等式不一定是方程。不含未知數的等式不是方程。

驗證:一般解方程之後,需要蠢襲進行驗證。驗證就是將解得的未知數的值代入原方程,看看方程兩邊是否相等。如果纖檔虧相等,那麼所求得的值就是方程的解。注意事項:寫「解」字,等號對齊,檢驗。

代數學中,根據方程未知數的個數,可將其分為:一元方程,二元方程,三元方程等。根據方程未知項的最高次數,可將其分為:一次方程,二次方程,三次方程等。在近代數學中,還有微分方程、差分方程、積分方程等學科。

在自然科學中,通常用一類特殊的式子,用來表示微觀粒子間在特定條件下相互轉化的過程,這種式子我們也稱其為「方程式」,簡稱「方程」。譬如核反應方程式、化學方程式、熱化學方程式、生化反應方程式、有關微觀粒子的產生與湮滅的方程式等。

『陸』 初中數學方程式怎麼解

數學初中方程式可以用代入消元法。

將方程組中一個方程的某個未知數用含有另一個未知數的代數式表示出來,代入另一個方程中,消去一個未知數,得到一個一元一次方程,最後求得方程組的解。

代入法解二元一次方程組的步驟:

①選取一個系數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數。

②將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程。(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的。)

③解這個一元一次方程,求出未知數的值。

④將求得的未知數的值代入①中變形後的方程中。求出另一個未知數的值。

⑤用「{」聯立兩個未知數的值,就是方程組的解。

⑥最後檢驗(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。

一元二次方程配方法

1、把原方程化為一般形式。

2、方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。

3、方程兩邊同時加上一次項系數一半的平方。

4、把左邊配成一個完全平方式,右邊化為一個常數。

5、進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。

『柒』 數學解方程有什麼方法

數學解方程的方法:

1、去分母,這是解一元一次方程的首要步驟,有分母的一元一次方程首先要去分母,當然如果方程中沒有分母,省去此步驟。

2、去括弧,去除分母之後,就該完成括弧的去除了,如果有分母,先去分母再去除括弧,沒有括弧的話可以省去此步驟。

3、移項,每個一元一次方程都會有的一步,就是把同類項的數據移動到同一邊,把未知數移動到等號的左邊。

4、直接根據四則運算中已知數與得數之間的關系,求未知數的值。

5、把含有未知數x的項看成是一個數,逐步求出未知數的值。

6、通過計算,先把原方程化簡,再逐步求出方程的解。

『捌』 方程式怎麼解 數學

一元一次方程的解法:去括弧、移項、合並同類項、系數化一。去括弧:把方程式中的括弧去掉。移項:首先將含有未知量的一項放在方程的一側,常數放在卜森方程的另一側,使其為x=a(常數)的形式。合並同類項:將多個含x的未知項化簡為一項,將多個常數a化簡為一項。系數化一:將等式化為x=a的形式。

數學方程式

指的是含有未知數x的等式或不等式組。根據含有未知數數目不型譽畝同、含有未知數冪數不同和含有未知數數目和冪數的不同來劃分方程式的類型。

分類

根據含有未知數數目不同,分為一元方程式、二元方程式和多元方程式;

根據含有未知數冪數不同,分為一元一次方程,一元二次方程,一元多次方程;

根據含有未知數數目和冪數的不同,分為二虛散元一次方程,二元二次方程,二元多次方程,多元多次方程。

『玖』 數學解方程有幾種方法

數學解方程有以下幾八種方法:
1、公式喚租法。
2、十字相乘法。
3、配方法。
4、因式分解法。
5、待定系數法。和耐兆
6、(線性)行列式法畝咐。
7、坐標圖象法。
8、幾何、三角、對數、微積分、函數求解法。

『拾』 怎樣解方程

如何學會解方程的方法
在小學階段,解方程是依據四則運算中已知數與得數之間的關系進行的。我們可以採用以下三種方法來解方程。

一、直接根據四則運算中已知數與得數之間的關系,求未知數的值。

例如:3.6÷x=0.9。這是除法式子,x是除數,表示x除3.6的商是0.9。根據除法中除數等於被除數除以商的關系,求x的值。

解方程: 3.6÷x=0.9

解: x=3.6÷0.9

x=4

二、把含有未知數x的項看成是一個數,逐步求出未知數的值。

例如:2x-6=14。把含有未知數的項(2x),看成是一個數。這樣6是減數,2x是被減數,14是差。先求出2x等於多少,再進一步求出x的值。

解方程: 2x-6=14

解:2x=14+6

2x=20

x=20÷2

x=10

三、通過計算,先把原方程化簡,再逐步求出方程的解。

例如:3x-2.5×4=5;先計算2.5×4,然後再依照前面的方法求未知數的值。

解方程: 3x-2.5×4=5

解: 3x-10=5

3x=5+10

3x=15

x=15÷3

x=5

又如:4.5x+5.5x+3=30;先計算4.5x+5.5x,然後再依照前面的方法求未知數的值。

解方程: 4.5x+5.5x+3=30

解: (4.5+5.5)x+3=30

10x+3=30

10x=30-3

10x=27

x=27÷10

x=2.7

練習:

解下列方程。

1.2-x=0.4 2.5x=63x+5=20 6x-14=10

7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14
解方程怎麼解
解方程的步驟(1)有括弧就先去掉(2)移項:將含未知數的項移到左邊,常數項移到另右邊(3)合並同類項:使方程變形為單項式(4)方程兩邊同時除以未知數的系數得未知數的值例如:3+x=18 解: x =18-3 x =15 ∴x=15是方程的解—————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解—————————— πr=6.28(只取π小數點後兩位)解這道題首先要知道π等於幾,π=3.1415926535,只取3.14,解:3.14r=6.28 r=6.28/3.14=2 不過,x不一定放在方程左邊,或一個方程式子里有兩個x,這樣就要用數學中的簡便計算方法去解決它了。有些式子右邊枯轎有x,為了簡便算,可以調換位置。 一元三次方程求解 一元三次方程的求根公式用通常的演繹思維是作不出來的,沒漏肆用類似解一元二次方程的求根公式的配方法只能將型如ax^3+bx^2+cx+d+0的標准型一元三次方程形式化為x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用歸納思維得到,即根據一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式歸納出一元三次方程的求根公式的形式。歸納出來的形如 x^3+px+q=0的一元三次方程的求根公式的形式應該為x=A^(1/3)+B^(1/3)型,即為兩個開立方之和。歸納出了一元三次方程求根公式的形式,下一步的工作就是求出開立方裡面的內容,也就是用p和q表示A和B。方法如下:(1)將x=A^(1/3)+B^(1/3)兩邊同時立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由於x=A^(1/3)+B^(1/3),所以搜遲(2)可化為x^3=(A+B)+3(AB)^(1/3)x,移項可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比較,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化簡得(6)A+B=-q,AB=-(p/3)^3 (7)這樣其實就將一元三次方程的求根公式化為了一元二次方程的求根公式問題,因為A和B可以看作是一元二次方程的兩個根,而(6)則是關於形如ay^2+by+c=0的一元二次方程兩個根的韋達定理,即(8)y1+y2=-(b/a),y1*y2=c/a (9)對比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由於型為ay^2+by+c=0的一元二次方程求根公式為y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化為(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 將(9)中的A=y1,B=y2,q=b/a,-(p......
請問怎麼解方程?用計算器
參考TI84 Plus 中文說明

wenku./...=51NaN
怎麼做?????解方程 比例
解:設能做a根

126:x=9:5

9x=126*5

x=630/9

x=70根
8+x等於20怎樣解方程,
8+x=20

等式兩邊同時 - 8

x=20-8

x=12

閱讀全文

與怎麼解數學方程式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:704
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1317
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1022
大學物理實驗干什麼用的到 瀏覽:1448
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:829
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1606
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017