㈠ 高中數學八大函數是什麼
高中數學八大函數是:冪函數,指數函數,對數函數,反函數,一次函數,二次函數,反比例函數,對勾函數。
函數的性質:
折疊函數有界性:設函數f(x)的定義域為D,數集X包含於D。如果存在數K1,使得f(x)≤K1對任一x∈X都成立,則稱函數f(x)在X上有上界,而K1稱為函數f(x)在X上的一個上界。
如果存在數K2,使得f(x)≥K2對任一x∈X都成立,則稱函數f(x)在X上有下界,而K2稱為函數f(x)在X上的一個下界。如果存在正數M,使得|f(x)|≤M對任一x∈X都成立,則稱函數f(x)在X上有界,如果這樣的M不存在,就稱函數f(x)在X上無界。
函數f(x)在X上有界的充分必要條件是它在X上既有上界又有下界。
折疊函數的單調性:設函數f(x)的定義域為D,區間I包含於D。如果對於區間I上任意兩點x1及x2,當x1<x2時,恆有f(x1)<f(x2),則稱函數f(x)在區間I上是單調增加的。
如果對於區間I上任意兩點x1及x2,當x1<x2時,恆有f(x1)>f(x2),則稱函數f(x)在區間I上是單調減少的。單調增加和單調減少的函數統稱為單調函數。