1. 如何教初中數學教學知識
如何教初中數學教學知識?教學是為學生服務的,在初中數學課堂教學中,立足學生實際,以學定教,激發學生興趣,關注學生個體差異,才能促進學生不斷獲得進步,也唯有如此,數學課堂教學改革才能取得實效。 下面是我為大家整理的關於如何教初中數學教學知識,希望對您有所幫助。歡迎大家閱讀參考學習!
1如何教初中數學教學知識
出示目標導學,自學尋求疑難
傳統數學課堂教學中,教師一般會直接地告訴學生所要學習的知識點,然後通過例題分析將知識「傳授」給學生,學生只能被動接受,學習效率不高。而以學定教所提倡的是發揮學生的主體性,讓學生在興趣的驅動下,在目標的指引下自主學習,求疑問難,從而為合作探究奠定基礎。首先,要注重通過情境來激發學生的學習興趣。教師在數學課堂中創設問題情境,讓學生在情境中發現問題,在問題引導下積極思考。以「一元一次方程的討論」的教學為例,教師在教學中需引導學生了解運用方程解決實際問題的過程,學會合並(同類項),會解「ax+bx=c」類型的一元一次方程,雖然學生對一元一次方程的概念有了初步了解,但還未建立解方程概念。
為此,教學時教師應以教材中的背景資料作為導入,用幻燈片展示阿爾・花拉子米的 故事 ,提出問題:「對消」與「還原」是什麼意思」?再出示目標引導自學。其次,要注重通過目標引導學生自主學習。在教學中,教師要根據教學需要制定出相應的學習目標,通過這些目標來引導學生閱讀教材、提出問題,進而自主學習。如在「從分數到分式」的教學過程中,教師導入新課後,提出目標:1.了解分式、有理式的概念;2.理解分式有意義的條件,分式的值為零的條件。然後引導學生自主學習教材,並對教材中的例題試解。學生自主學習後以問題「什麼是分式?什麼是有理式?如何求出分式有意義的條件?如何求出分式的值為零的條件」來進行檢查自主學習情況。在該過程中,教師也可在導入新課後,通過導學案引導學生完成相應問題,然後檢查。
推進設疑自學
學生主動自主學習要比教師灌輸式的教學效果要好很多,在課堂教學過程中,教師可以根據相應的教學流程設置一些既能引發學生思考,又能推動教學進程的問題,充分發揮學生在課堂教學中的主動性。例如:在學習三角形這一節時,主要探討三角形全等的「邊角邊」條件及其應用。首先,將全班學生分為幾個小組,教師提問:「當兩個三角形的6個元素中只有一組邊相等或者角相等時,那兩個三角形全等嗎?」以及「從三角形的6個元素中任意選出其中 3 個元素,那麼有多少種選擇 方法 呢?」
然後,讓學生自己動手操作,採用一張長方形的紙任意裁剪一個三角形,將這個長方形紙重新剪一個直角三角形,通過什麼辦法,能夠讓兩個三角形全等呢?通過一步一步引導學生進行自主探索。最後,有位學生提出「利用一個直角,再量其他兩邊長度」。教師要求全班學生按照該學生的方法剪下直角三角形。全班學生通過測量、驗證、交流等,進而得出相關結論。在整個過程中,有教師提問,也有學生動手操作,得出問題答案,不僅增加了師生之間的互動,而且還培養了學生的創新能力以及探索能力。
2數學的創新 教學方法
充分發揮教材作用
教師教學離不開教材,數學教材是數學教學的媒體,是學生學習活動的主線,教材不可能適應每個班每個人,教師要發揮主動性和積極性,創造性地使用教材,進行創造性教學,結合新教材的內容編排,在課堂上,關注學生要多於關注教材, 教育 是一種關注,關注學生的成長,關注學生的學習目的,學習內容,學習方式,學習環境,關注學生的個體差異,適時地實施有差異的教學
使每個學生得到充分的發展。 教師教學還要緊跟時代,利用現代教育技術在教學中的應用,有效地使用多媒體技術,多媒體技術可以使學習的內容圖文並茂,栩栩如生,自然增加了教學的魅力,使學習者保持良好的學習興趣,提高教學效益。
培養學生的創新能力
創新能力的培養是需要充分地尊重學生的學習自由和學習興趣的。能夠使學生的心理和情感不受來自課堂之外的干擾和約束,需要教師通過恰當的教學組織形式,積極創設數學教學模式,激勵和支持學生打破自己的思維定勢,發現問題,從另一個角度提出疑問,從而更加有效的討論解決問題,就是說要培養學生敢於向固有答案挑戰的精神和能力。
培養學生的創新能力,關鍵在於確立以學生為本的教育思路,倡導學索欲的全過程。數學教學是數學活動的教學,是數學思維過程的教學,是師生之間、同學之間交往互動與共同發展的過程。數學教學應根據所要完成的教材內容,從學情出發,在課堂教學中創設有助於學生自主學習的問題情境,發揮學生的主體性,課堂上教師要摒棄師道尊嚴,發揚教學民主。激發學生的學習潛能,鼓勵學生大膽創新與實踐,同時發揮教師的主導地位,組織、引導學生的數學學習活動,與學生合作,努力引導學生從已有的知識和 經驗 出發,進行自主探索,合作交流,並在學習過程中逐步學習、漸漸進步,引導學生通過實踐、思考、探索、交流,獲取知識,形成技能,鍛煉思維,發展能力,學會學習,促使學生在教師的指導下生動活潑。
3數學教學中 創新思維
大膽嘗試,培養學生良好個性
在教學中,利用「難題」設置困難情景,讓學生置身其中,迎接挑戰,大膽嘗試,開闊思路,戰勝困難,有利於學生良好的個性形成。如學習圓的面積後,讓學生選定一棵樹干,測量計算它的橫截面的面積。許多同學拿著捲尺或直尺圍著樹干無從下手,面臨的問題是:橫截面的面積怎麼測量?通過討論,明白可先測量樹乾的周長或直徑,再求橫截面的面積。
此時,又發現了新的「問題」:為什麼許多同學算出的橫截面的面積會不一樣呢?在引導學生分析問題產生的原因:由於測量樹乾的位置不同,所以得到的橫截面的面積也不同。這樣通過發現問題到解決問題,不僅使學生弄清知識的疑難點,而且使學生意識到:遇到「問題」不要放棄,只要堅持下去,不斷努力,才能最後成功。既提高了學生對挫折的耐受力和克服困難的勇氣,又有利於良好個性品質的形成。
豐富知識,構建良好的認知結構
知識與思維發展密切相關,培養創新思維要以豐富而扎實的知識做基礎,掌握的知識越多,越容易產生新的聯想,新的見解和新的創造。只有建立了豐富而合理的知識結構,學生才能在習以為常的現象中去重新組合已有知識,從而產生有創意的見解。
我設置了這樣一道練習題:「一個養雞專業戶用75米長得籬笆,利用房屋壁做一邊,圍成一個長方形養雞場。養雞場長是35米,面積是多少平方米?」讓學生先找出寬,在根據面積公式計算出面積,然後改成若不告訴你長是35米,直接求圍成的長方形最大面積是多少?讓學生討論,試探尋找答案。這既需要學生有創新意識,又需要學生具備豐富合理的知識結構。只有二者緊密結合,融會貫通,才能解決。
4數學自主教學模式
課後自主探索與創新
學生學習包括著課前、課中和課後的學習,針對課後學習,教師則應該多加要求學生自己根據興趣去探索一些教材以外的數學知識,培養自己的獨自創造意識和解決問題的能力。課後自主探索的學習也是對教材知識的進一步鞏固和深化,在理解的基礎上不斷創造的過程。例如蘇教版初中數學七年級上冊中「走進圖形的世界」,其中有涉及到對「主視圖、左視圖、右視圖」的學習,學生在課後有充足的場地和道具來探索這個問題,他們可以藉助家裡的各種物體來進行主、左、右視圖的觀察。除此外,學生還可以進一步觀察物體的俯視圖、仰視圖、側視圖等不同角度的物體形態,並且可以用畫圖的方式記錄下各個角度的物體形態,然後在課堂上講解給其他學生自己觀察的結果。通過這種方式學生之間也可以進一步地進行數學問題交流,極大拓寬了數學學習的空間,把教材的局限性縮小。
學生在學習「相似三角形」時同樣也可以進行課後探究,相似三角形的判定是一個合適的探索問題,學生除了對教材中的判定定理掌握外,也可以自己在課後進行小組式地探索,找找其他判定相似三角形的辦法。學生在不斷發現問題後才能創新問題,小組力量的強大給了學生們更多學習的支持,推動他們在自主學習這條路上越走越遠。同時也能夠收獲更多額外的知識和 學習方法 ,對於各方面的自主發展起著重要作用。
從預習中培養獨立意識
數學的自主學習要從預習開始,學生的自主性學習能夠幫助他們預先發現問題,並且在發現問題後能夠刺激他們去思考,而這個思考的過程又是自發性的,所以在預習階段,學生能夠完全地發揮獨立自主能力來做好數學學習的准備。例如蘇教版初中數學七年級下冊中關於「平面圖形的認識」這一單元,學生就能夠充分發揮自己觀察、思考的能力。教師可以先引導學生去觀察生活中的平面圖形,比如電視機屏幕、桌面、卡片等東西都是可以作為觀察的對象。學生通過自己觀察產生對「平面圖形」的認識,並且也能夠發現一些問題:水杯的面能不能稱作平面呢;水平面是不是平面呢……從而在課堂教學過程中能夠更加容易地理解教材中的數學理論知識。教師在教學的同時也更能順利地讓學生明白自己表達的知識點,提高課堂效率。所以學生在學習數學時,自主預習的工作是非常必要的,在預習中發現的問題能夠在課堂上得到很好的解釋,幫助了學生對知識點的掌握。
還比如學習「軸對稱圖像」時,學生也要通過自己的預習來發現問題。軸對稱圖形與中心對稱圖形是學生容易混淆的知識點,所以學生在自主預習過程也會不難發現其中的差別,這對於課堂上老師教學講解軸對稱和中心對稱圖形的區別有著一定的幫助。所以學生自主學習對教師教學也有著巨大的推動作用。
相關 文章 :
1. 初中數學教學方法與策略有哪些?
2. 老師怎樣教好初中數學
3. 初中數學教學方法有哪些?
4. 初中數學老師的教學方法技巧
5. 初中數學常用教學方法有哪些
2. 初中數學怎麼教才更有效
怎樣學好初中數學?需要使用什麼方式哪?
數學是很多的學生都在煩惱的問題,有很多的學生存在一定的問題,這個科目的分數非常低,那麼怎樣學好初中數學哪?有什麼方式可以改善嗎?
知識點
所以想要學好數學,需要多方面的努力,這與很多的因素有關,首先可以找到屬於自己的學習方式,然後了解這個科目的特點,使自己有一定的了解之後,開始進行學習,相信通過本篇文章你應該知道怎樣學好初中數學了吧!
3. 初中數學解題技巧與方法
我在這里整理了初中數學常用的解題法和不同題型解題法,希望能幫助到大家。
初中數學常用解題法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
不同題型的解題法
選擇題:
在做選擇題可運用各種解題的方法:如直接法、特殊值法、排除法、驗證法、圖解法、假設法、動手操作法(比如折一折,量一量等方法),對於選擇題中有「或」的選項一定要警惕,看看要不要取捨。
填空題:
注意一題多解等特殊情況。
考慮各種簡便方法解題。選擇題、填空題更是如此(直接法最後考慮)尤其是選擇題,有些可用排除法、特殊值法、畫圖像解答,不必每題都運算 。
解答題:
1.注意規范答題,過程和結論都要書寫規范。認真審題,不慌不忙,先易後難,不能忽略 題目中的任何一個條件。
2.計算題一定要細心,最後答案要最簡,要保證絕對正確。
3.先化簡後求值問題,要先化到最簡,代入求值時要注意:分母不為零;適當考慮技巧,如整體代入。
4.解直角三角形問題。注意交代輔助線的作法,解題步驟。關注直角、特殊角。取近似值時一定要按照題目要求。
5.實際應用問題,題目長,多讀題,根據題意,找准關系,列方程、不等式(組)或函數關系式。最後一定要檢驗方程的解。
6.證明題:切線證明要寫出輔助線的作法,輔助線要用虛線;遇到線段比例式及乘積式,就要證線段所在的三角形相似,同時注意線段的等量代換(注意線段倍數關系)。
7.方案設計題:要看清楚題目的設計要求,設計時考慮滿足要求的最簡方案,不要考慮復雜、追求美觀的方案。
8.若壓軸題最後一問確實無從下手,可以放棄,不如把時間放在檢驗別的題目上,對於存在性問題,要注意可能有幾種情況不要遺漏。對於動點問題,注意要通過多畫草圖的方法把運動過程搞清楚,也要考慮可能有幾種情況。
解各類大題目時腦子里必須反映出該題與平時做的哪道題類似,應反映出似曾相識,又非曾相識的感覺。
一解題方法歸納:1.配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2.因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法,在代數、幾何、三角函數等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3.換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4.判別式法與韋達定理
一元二次方程aX²+bX+c=0(a、b、c∈R,a≠0)根的判別式△=b²-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5.待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。
6.構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7.反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。
用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8.等(面或體)積法
平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關的性質定理,不僅可用於計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用面積(體積)關系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。
用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯系起來,通過運算達到求證的結果。所以用等(面或體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9.幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。
一通過實例介紹常用方法:(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
4. 初中數學勾股定理說課稿
初中數學勾股定理說課稿
在初中數學教學中,勾股定理是初中幾何數學的基礎,學好勾股定理,有助於提升對數學的認知以及對圖形圖像的理解,下面是我為大家提供的初中數學勾股定理說課稿,一起來看看這課是怎麼教學的吧!
一、教材分析:
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。
教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利辯做於正確的進行運用。
據此,制定教學目標如下:
1、理解並掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的`民族自豪感和鑽研精神。
二、教學重點:
勾股定理的證明和應用。
三、教學難點:
勾股定理的證明。
四、教法和學法:
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習慾望和興趣,組織學生活動,讓學生主動參與學習全過程。
切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,攜轎衡從而激發學生鑽研新知的慾望。
五、教學程序
:本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那麼弦等於5。這樣引起學生學習興趣,激發學生求知慾。
2、是不是所有的直角三角形都有這個性質呢?教師要善於激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難、討論歸納:
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。
2、教師引導學生按照要求進行拼圖,觀察並分析;
(1)這兩個圖形有什麼特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最後,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習 強化提高
1、出示練習,學生分組解答,並由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可採取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以採取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結 練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,藉助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
;5. 做初中數學題的技巧方法
大題是高考數學科目的重要組成部分,也是比分佔得很重的一部分,考生需要掌握解題技巧,才能正確答題,那麼接下來給大家分享一些關於做初中數學題的技巧 方法 ,希望對大家有所幫助。
做初中數學題要分類討論題
分類討論在數學題中經常以最後壓軸題的方式出現,以下幾點是需要大家注意分類討論的:
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據圖形的特殊性質,找准討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最後要綜合。
2、討論點的位置一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對應關系多涉及到三角形的全等或相似問題,對其中可能出現的有關角、邊的可能對應情況加以分類討論。
4、代數式變形中如果有絕對值、平方時,裡面的數開出來要注意正負號的取捨。
5、考查點的取值情況或范圍。這部分多是考查自變數的取值范圍的分類,解題中應十分注意性質、定理的使用條件及范圍。
6、函數題目中如果說函數圖象與坐標軸有交點,那麼一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。
7、由動點問題引出的函數關系,當運動方式改變後(比如從一條線段移動到另一條線段)時,所寫的函數應該進行分段討論。
值得注意的是:在列出所有需要討論的可能性之後,要仔細審查是否每種可能性都會存在,是否有需要捨去的。
最常見的就是一元二次方程如果有兩個不等實根,那麼我們就要看看是不是這兩個根都能保留。
做初中數學題四個秘訣
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的,幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變數
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題。
其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
做初中數學題答題技巧
1、定位準確防止 「撿芝麻丟西瓜」
在心中一定要給壓軸題或幾個「難點」一個時間上的限制,如果超過你設置的上限,必須要停止,回頭認真檢查前面的題,盡量要保證選擇、填空萬無一失,前面的解答題盡可能的檢查一遍。
2、解數學壓軸題做一問是一問
第一問對絕大多數同學來說,不是問題;如果第一小問不會解,切忌不可輕易放棄第二小問。
過程會多少寫多少,因為數學解答題是按步驟給分的,字跡要工整,布局要合理;
盡量多用幾何知識,少用代數計算,盡量用三角函數,少在直角三角形中使用相似三角形的性質。
做初中數學題壓軸題技巧
縱觀全國各地的中考數學試卷,數學綜合題關鍵是第22題和23題,我們不妨把它分為函數型綜合題和幾何型綜合題。
(一)函數型綜合題
是先給定直角坐標系和幾何圖形,求(已知)函數的解析式(即在求解前已知函數的類型),然後進行圖形的研究,求點的坐標或研究圖形的某些性質。
初中已知函數有:
①一次函數(包括正比例函數)和常值函數,它們所對應的圖像是直線;
②反比例函數,它所對應的圖像是雙曲線;
③二次函數,它所對應的圖像是拋物線。求已知函數的解析式主要方法是待定系數法,關鍵是求點的坐標,而求點的坐標基本方法是幾何法(圖形法)和代數法(解析法)。
(二)幾何型綜合題
先給定幾何圖形,根據已知條件進行計算,然後有動點(或動線段)運動,對應產生線段、面積等的變化。
求對應的(未知)函數的解析式(即在沒有求出之前不知道函數解析式的形式是什麼)和求函數的定義域,最後根據所求的函數關系進行探索研究,一般有:
在什麼條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等;
探索兩個三角形滿足什麼條件相似等;
探究線段之間的位置關系等;
探索麵積之間滿足一定關系求x的值等和直線(圓)與圓的相切時求自變數的值等。
求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),變形寫成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變數的方程,然後求出第三個變數和x之間的函數關系式,代入消去第三個變數,得到y=f(x)的形式),當然還有參數法,這個已超出初中數學教學要求。
找等量關系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據解析式求解。
而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。
在解數學綜合題時我們要做到:數形結合記心頭,大題小作來轉化,潛在條件不能忘,化動為靜多畫圖,分類討論要嚴密,方程函數是工具,計算推理要嚴謹,創新品質得提高。
做初中數學題的技巧方法相關 文章 :
★ 初中數學解題技巧與方法
★ 初中數學題中的小技巧整理
★ 初中數學學習方法以及技巧
★ 做數學選擇題的十種技巧
★ 初中數學學習方法總結,數學的六大方法技巧!
★ 初中數學解題方法大匯總
★ 初中數學題中的小技巧
★ 初中數學里常用的十種經典解題方法
★ 做題技巧數學初中解題方法總結
6. 初中數學幾何證明題技巧
幾何證明題入門難,證明題難做,是許多初中生在學習中的共識,這裡面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完後,還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取。我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.餘角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然後結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的鬆了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鍾的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往後出現同樣類型的題該怎樣入手。
以上是常見證明題的解題思路,當然有一些的題設計的很巧妙,往往需要我們在填加輔助線,
分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明 角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
7. 初中數學怎樣幫助學生揭示解題規律總結解題方法的案例
初中數學教學典型案例分析
我僅從四個方面,藉助教學案例分析的形式,向老師們匯報一下我個人數學教學的體會,這四個方面是:
在多樣化學習活動中實現三維目標的整合;2.課堂教學過程中的預設和生成的動態調整;3.對數學習題課的思考;4.對課堂提問的思考。
首先,結合《勾股定理》一課的教學為例,談談如何在多樣化學習活動中實現三維目標的整合
案例1:《勾股定理》一課的課堂教學
第一個環節:探索勾股定理的教學
師(出示4幅圖形和表格):觀察、計算各圖中正方形A、B、C的面積,完成表格,你有什麼發現?
A的面積
B的面積
C的面積
圖1
圖2
圖3
圖4
生:從表中可以看出A、B兩個正方形的面積之和等於正方形C的面積。並且,從圖中可以看出正方形A、B的邊就是直角三角形的兩條直角邊,正方形C的邊就是直角三角形的斜邊,根據上面的結果,可以得出結論:直角三角形的兩條直角邊的平方和等於斜邊的平方。
這里,教師設計問題情境,讓學生探索發現「數」與「形」的密切關聯,形成猜想,主動探索結論,訓練了學生的歸納推理的能力,數形結合的思想自然得到運用和滲透,「面積法」也為後面渣世定理的證明做好了鋪墊,雙基教學寓於學習情境之中。
第二個環節:證明勾股定理的教學
教師給各小組奮發製作好的直角三角形和正方形紙片,先分組拼圖探究,在交流、展示,讓學生在實踐探究活動中形成新的能力 (試圖發現拼圖和證明的規律:同一個圖形面積用不同的方法表示)。
學生展示略
通過小組探究、展示證明方法,讓學生把已有的面積計算知識與要證明的代數式聯系起來,並試圖通過幾何意義的理解構造圖形,讓學生在探求證明方法的過程中深刻理解數學思想方法,提升創新思維能力。
第三個環節:運用勾股定理的教學
師(出示右圖):右圖是由兩個正方形
組成的圖形,能否剪拼為一個面積不變的新
的正方形,若能,看誰剪的次數最少。
生(出示右圖):可以剪拼成一個面積
不變的新的正方形,設原來的兩個正方形的
邊長分別是a、b,那麼它們的面積和就是
a2+ b2,由於面積不變,所以新正方形的面積
應該是a2+ b2,所以只要是能剪出兩個以a、b
為直角邊的直角三角形,把它們重新拼成一個
邊長為 a2+ b2 的正方形就行了。
問題是數學的心臟,學習數學的核心就在於提高解決問題的能力。教師在此設置問題不僅是檢驗勾股定理的靈活運用,更是對勾股定理探究方法和證明思想(數形結合思想、面積割補的方法、轉化和化歸思想)的綜合運用,從而讓學生在解決問題中發展創新能力。
第四個環節:挖掘勾股定理文化價值
師:勾股定理揭示了直角三角形三邊之間的數量關系,見數與形密切聯系起來。它在培養學生數學計算、數學猜想、數學推斷、數學論證和運用數學液梁喚思想方法解決實際問題中都具有獨特的作用。勾股定理最早記載於公元前十一世紀我國古代的《周髀算經》,在我國古籍《九章算術》中提出「出入相補」原理證明勾股定理。在西方勾股定理又被成為「畢達哥拉斯定理」,是歐式幾何的核心定理之一,是平面幾何的重要基礎,關於勾股定理的證明,吸引了古今中外眾多數學家、物理學家、藝術家,甚至美國總鬧凱統也投入到勾股定理的證明中來。它的發現、證明和應用都蘊涵著豐富的數學人文內涵,希望同學們課後查閱相關資料,了解數學發展的歷史和數學家的故事,感受數學的價值和數學精神,欣賞數學的美。
新課程三維目標(知識和技能、過程和方法、情感態度和價值觀)從三個維度構建起具有豐富內涵的目標體系,課程運行中的每一個目標都可以與三個維度發生聯系,都應該在這三個維度上獲得教育價值。
2.課堂教學過程中的預設和生成的動態調整
案例2:年前,在魯教版七年級數學上冊《配套練習冊》第70頁,遇到一道填空題:
例:設a、b、c分別表示三種質量不同的物體,如圖所示,圖①、圖②兩架天平處於平衡狀態。為了使第三架天平(圖③)也處於平衡狀態,則「?」處應放 個物體b?
a
a
b
c
圖① 圖②
a
c
?
圖③
通過調查,這個問題只有極少數學生填上了答案,還不知道是不是真的會解,我需要講解一下。
我講解的設計思路是這樣的:
一.引導將圖①和圖②中的平衡狀態,用數學式子(符號語言——數學語言)表示(現實問題數學化——數學建模):
圖①:2a=c+b. 圖②: a+b=c.
因此,2a=(a+b)+b.
可得:a=2b, c=3b .
所以,a+c = 5b.
答案應填5.
我自以為思維嚴密,有根有據。然而,在讓學生展示自己的想法時,卻出乎我的意料。
學生1這樣思考的:
假設b=1,a=2,c=3.所以,a+c = 5,答案應填5.
學生這是用特殊值法解決問題的,雖然特殊值法也是一種數學方法,但是存在很大的不確定性,不能讓學生僅停留在這種淺顯的思維表層上。面對這個教學推進過程的教學「新起點」,我必須深化學生的思維,但是,還不能打擊他的自信心,必須保護好學生的思維成果。因此,我立刻放棄了准備好的講解方案,以學生思維的結果為起點,進行調整。
我先對學生1的方法進行積極地點評,肯定了這種思維方式在探索問題中的積極作用,當那幾個同樣做法的學生自信心溢於言表時,我隨後提出這樣一個問題:
「你怎麼想到假設b=1, a=2, c=3?a、b、c是不是可以假設為任意的三個數?」
有的學生不假思索,馬上回「可以是任意的三個數。」也有的學生持否定意見,大多數將信將疑,全體學生被這個問題吊足了胃口,我趁機點撥:
「驗證一下吧。」
全班學生立刻開始思考,驗證,大約有3分鍾的時間,學生們開始回答這個問題:
「b=2,a=3,c=4時不行,不能滿足圖①、圖②中的數量關系。」
「b=2,a=4,c=6時可以。結果也該填5.」
「b=3,a=6,c=9時可以,結果也一樣。」
「b=4,a=8,c=12時可以,結果也一樣。」
「我發現,只要a是b的2倍,c是b的3倍就能滿足圖①、圖②中的數量關系,結果就一定是5.」
這時,學生的思維已經由特殊上升到一般了,也就是說在這個過程中,學生的歸納推理得到了訓練,對特殊值法也有了更深的體會,用字母表示發現的規律,進而得到a=2b,c=3b .所以,a+c = 5b. 答案應填5.
我的目的還沒有達到,繼續拋出問題:
「我們列舉了好多數據,發現了這個結論,你還能從圖①、圖②中的數量關系本身,尋找更簡明的方法嗎?」學生又陷入深深地思考中,當我巡視各小組中出現了「圖①:2a=c+b. 圖②: a+b=c.」時,我知道,學生的思維快與嚴密的邏輯推理接軌了。
我們是不是都有這樣的感受,課堂教學設計兼具「現實性」與「可能性」的特徵,這意味著課堂教學設計方案與教學實施過程的展開之間不是「建築圖紙」和「施工過程」的關系,即課堂教學過程不是簡單地執行教學設計方案的過程。
在課堂教學展開之初,我們可能先選取一個起點切入教學過程,但隨著教學的展開和師生之間、生生之間的多向互動,就會不斷形成多個基於不同學生發展狀態和教學推進過程的教學「新起點」。因此課堂教學設計的起點並不是唯一的,而是多元的;不是確定不變的,而是預設中生成的;不是按預設展開僵硬不變的,而是在動態中調整的。
3.一節數學習題課的思考
案例3:一位教師的習題課,內容是「特殊四邊形」。
該教師設計了如下習題:
A
O
F
E
B
H
G
C
題1 (例題)順次連接四邊形各邊的中點,所得的四邊形是怎樣的四邊形?並證明你的結論。
題2 如右圖所示,△ABC中,中線BE、CF
交於O, G、H分別是BO、CO的中點。
(1) 求證:FG∥EH;
(2) 求證:OF=CH.
O
F
A
E
C
B
D
題3 (拓展練習)當原四邊形具有什麼條件時,其中點四邊形為矩形、菱形、正方形?
題4 (課外作業)如右圖所示,
DE是△ABC的中位線,AF是邊
BC上的中線,DE、AF相交於點O.
(1)求證:AF與DE互相平分;
(2)當△ABC具有什麼條件時,AF = DE。
(3)當△ABC具有什麼條件時,AF⊥DE。
F
G
E
H
D
C
B
A
教師先讓學生思考第一題(例題)。教師引導學生畫圖、觀察後,進入證明教學。
師:如圖,由條件E、F、G、H
是各邊的中點,可聯想到三角形中位
線定理,所以連接BD,可得EH、
FG都平行且等於BD,所以EH平行
且等於FG,所以四邊形EFGH是平行四邊形,下面,請同學們寫出證明過程。
只經過五六分鍾,證明過程的教學就「順利」完成了,學生也覺得不難。但讓學生做題2,只有幾個學生會做。題3對學生的困難更大,有的模仿例題,畫圖觀察,但卻得不到矩形等特殊的四邊形;有的先畫矩形,但矩形的頂點卻不是原四邊形各邊的中點。
評課:本課習題的選擇設計比較好,涵蓋了三角形中位線定理及特殊四邊形的性質與判定等數學知識。運用的主要方法有:(1)通過畫圖(實驗)、觀察、猜想、證明等活動,研究數學;(2)溝通條件與結論的聯系,實現轉化,添加輔助線;(3)由於習題具備了一定的開放性、解法的多樣性,因此思維也要具有一定的深廣度。
為什麼學生仍然不會解題呢?學生基礎較差是一個原因,在教學上有沒有原因?我個人感覺,主要存在這樣三個問題:
(1)學生思維沒有形成。教師只講怎麼做,沒有講為什麼這么做。教師把證明思路都說了出來,沒有引導學生如何去分析,剝奪了學生思維空間;
(2)缺少數學思想、方法的歸納,沒有揭示數學的本質。出現講了這道題會做,換一道題不會做的狀況;
(3)題3是動態的條件開放題,相對於題1是逆向思維,思維要求高,學生難把握,教師缺少必要的指導與點撥。
修正:根據上述分析,題1的教學設計可做如下改進:
首先,對於開始例題證明的教學,提出「序列化」思考題:
(1)平行四邊形有哪些判定方法?
(2)本題能否直接證明EF∥FG , EH=FG? 在不能直接證明的情況下,通常考慮間接證明,即藉助第三條線段分別把EH和FG的位置關系(平行)和數量關系聯系起來,分析一下,那條線段具有這樣的作用?
(3)由E、F、G、H是各邊的中點,你能聯想到什麼數學知識?
(4)圖中有沒有現成的三角形及其中位線?如何構造?
設計意圖:上述問題(1)激活知識;問題(2)暗示輔助線添加的必要性,滲透間接解決問題的思想方法;問題(3)、(4)引導學生發現輔助線的具體做法。
其次,證明完成後,教師可引導歸納:
我們把四邊形ABCD稱為原四邊形,四邊形EFGH稱為中點四邊形,得到結論:任意四邊形的中點四邊形是平行四邊形;輔助線溝通了條件與結論的聯系,實現了轉化。原四邊形的一條對角線溝通了中點四邊形一組對邊的位置和數量關系。這種溝通來源於原四邊形的對角線同時又是以中點四邊形的邊為中位線的兩個三角形的公共邊,由此可感受到,起到這種溝通作用的往往是圖形中的公共元素,因此,在證明中一定要關注這種公共元素。
然後,增設「過渡題」:原四邊形具備什麼條件時,其中點四邊形為矩形?教師可點撥思考:
怎樣的平行四邊形是矩形?結合本題特點,你選擇哪種方法?考慮一個直角,即中點四邊形一組鄰邊的位置關系。一組鄰邊位置和數量關系的變化,原四邊形兩條對角線的位置和數量關系也隨之變化。
根據修正後的教學設計換個班重上這節課,這是效果明顯,大部分學生獲得了解題的成功,幾個題都出現了不同的證法。
啟示:習題課教學,例題教學是關鍵。例題與習題的關系是綱目關系,綱舉則目張。在例題教學中,教師要指導學生學會思維,揭示數學思想,歸納解題方法策略。可以嘗試以下方法:
(1)激活、檢索與題相關的數學知識。知識的激活、檢索緣於題目信息,如由條件聯想知識,由結論聯系知識。知識的激活和檢索標志著思維開始運作;
(2)在思維的障礙處啟迪思維。思維源於問題,數學思維是隱性的心理活動,教師要設法採取一定的形式,凸顯思維過程,如:設計相關的思考問題,分解題設障礙,啟迪學生有效思維。
(3)及時歸納思想方法與解題策略。從方法論的角度考慮,數學習題教學,意義不在習題本身,數學思想方法、策略才是數學本質,習題僅是學習方法策略的載體,因此,方法策略的總結是很有必要的。題1的歸納總結使題2迎刃而解,題2是將題1的凸四邊形ABCD變為凹四邊形ABOC,兩題的實質是一樣的。學生在解題3時,試圖模仿題1,這是解題策略問題。題1條件確定,可以通過畫圖、觀察發現,題3必須通過推理發現後才可畫出圖形。
4. 注意課堂提問的藝術
案例1:一堂公開課——「相似三角形的性質」,為了了解學生對相似三角形判定的掌握情況,提出兩個問題:
(1) 什麼叫相似三角形?
(2) 相似三角形有哪幾種判定方法?
聽了學生流利、圓滿的回答,教師滿意地開始了新課教學。老師們對此有何評價?
C
B
A
事實上學生回答的只是一些淺層次記憶性知識,並沒有表明他們是否真正理解。可以將提問這樣設計:
如圖,在△ABC和△A?B?C?中,
(1)已知∠A=∠A?,補充一個合適的
C?
A?
B?
條件 ,使△ABC∽△A?B?C?;
(2)已知AB/A?B?=BC/B?C?;補充一個合適的
條件 ,使△ABC∽△A?B?C?.
回答這樣的問題,僅靠死記硬背是不行的,只有在真正掌握了相似三角形判定的基礎上才能正確回答。這樣的提問能起到反思的作用,學生的思維被激活,教學的有效性能夠提高。
案例2:一堂講菱形的判定定理(是講對角線互相垂直平分的四邊形是菱形)的課,教師畫出圖形後,有一段對話:
師:四邊形ABCD中,AC與BD互相垂直平分嗎?
B
C
A
D
生:是!
師:你怎麼知道?
生:這是已知條件!
師:那麼四邊形ABCD是菱形嗎?
生:是的!
師:能通過證三角形全等來證明結論嗎?
生:能!
老師們感覺怎樣?實際上,老師已經指明用全等三角形證明四邊形的邊相等,學生幾乎不怎麼思考就開始證明了,所謂的「導學」實質成了變相的「灌輸」。雖從表面上看似熱鬧活躍,實則流於形式,無益於學生積極思維。可以這樣修正一下提問的設計:
(1)菱形的判定已學過哪幾種方法?(1.一組鄰邊相等的平行四邊形是菱形;2.四邊相等的四邊形是菱形)
(2)兩種方法都可以嗎?證明邊相等有什麼方法?(1.全等三角形的性質;2.線段垂直平分線的性質)
(3)選擇哪種方法更簡捷?
案例3:「一元一次方程」的教學片段:
師:如何解方程3x-3=-6(x-1)?
生1:老師,我還沒有開始計算,就看出來了,x =1.
師:光看不行,要按要求算出來才算對。
生2:先兩邊同時除以3,再……(被老師打斷了)
師:你的想法是對的,但以後要注意,剛學新知識時,記住一定要按課本的格式和要求來解,這樣才能打好基礎。
老師們感覺怎樣?這位教師提問時,把學生新穎的回答中途打斷,只滿足單一的標准答案,一味強調機械套用解題的一把步驟和「通法」。殊不知,這兩名學生的回答的確富有創造性,可惜,這種偶爾閃現的創造性思維的火花不僅沒有被呵護,反而被教師「標準的格式」輕易否定而窒息扼殺了。其實,學生的回答即使是錯的,教師也要耐心傾聽,並給與激勵性評析,這樣既可以幫助學生糾正錯誤認識,又可以激勵學生積極思考,激發學生的求異思維,從而培養學生思維能力。
有的老師提問後留給學生思考時間過短,學生沒有時間深入思考,結果問而不答或者答非所問;有的老師提問面過窄,多數學生成了陪襯,被冷落一旁,長期下去,被冷落的學生逐漸對提問失去興趣,上課也不再聽老師的,對學習失去動力。
關於課堂提問,我感覺要注意以下問題:
(1)提問要關注全體學生。提問內容設計要由易到難,由淺入深,要富有層次性,不同的問題要提問不同層次的學生;
(2)提問要有思考的價值,課堂提問要選擇一個「最佳的智能高度」進行設問,是大多數學生「跳一跳,夠得著」;
(3)提問的形式和方法要靈活多樣。注意提問的角度轉換,引導學生經歷嘗試、概括的過程,充分披露靈性,展示個性,讓學生得到的是自己探究的成果,體驗的是成功的快樂,使「冰冷的,無言的」數學知識通過「過程」變成「火熱的思考」。