導航:首頁 > 數字科學 > 數學思想方法有哪些

數學思想方法有哪些

發布時間:2022-03-01 19:08:13

❶ 一般的數學思想方法有哪些

1 函數思想

把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。

2 數形結合思想

把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答。

3 整體思想

整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

4 轉化思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。

5 類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼推斷它們在其他方面也可能有相同或類似之處。

(1)數學思想方法有哪些擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。

它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。

在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。

我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系。

實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。

引起分類討論的原因主要是以下幾個方面:

① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。

② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。

③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。

另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。

進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。

解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。

❷ 小學數學中常用的數學思想方法有哪些

小學數學常用的教學方法有六種,分別是:
講授法、談話法、討論法、練習法、演示法、動手操作法、啟發法
1、講授法
講授法是教師運用口頭語言向學生描繪情境、敘述事實、解釋概念、論證原理和闡明規律的一種教學方法。
2、談話法
談話法又稱回答法,它是通過師生的交談來傳播和學習知識的一種方法。其特點是教師引導學生運用已有的經驗和知識回答教師提出的問題,藉以獲得新知識或鞏固、檢查已學的知識。
3、演示法
演示法是教師把實物或實物的模象展示給學生觀察,或通過示範性的實驗,通過現代教學手段,使學生獲得知識更新的一種教學方法。它是輔助的教學方法,經常與講授、談話、討論等方法配合一起使用。
4、練習法
練習法是在教師指導下學生鞏固知識和培養各種學習技能的基本方法,也是學生學習過程中的一種主要的實踐活動。
5、課堂討論法
討論法是在教師指導下,由全班或小組圍繞某一種中心問題通過發表各自意見和看法,共同研討,相互啟發,集思廣益地進行學習的一種方法。
6、動手操作法
動手操作法是學生在教師的指導下,使用一定的設備和材料,通過操作,引起實驗對象的某些變化,並從觀察這些變化中獲得新知識或驗證知識的一種教學方法,它也是自然科學學科常用的一種方法。
7、啟發法
啟發教學可以由一問一答、一講一練的形式來體現;也可以通過教師的生動講述使學生產生聯想,留下深刻印象而實現。所以說,啟發性是一種對各種教學方法和教學活動都具有的指導意義的教學思想,啟發式教學法就是貫徹啟發性教學思想的教學法。也就是說,無論什麼教學方法,只要是貫徹了啟發教學思想的,都是啟發式教學法,反之,就不是啟發式教學法。

❸ 數學思想方法有哪幾種

1.把MP3機子的電源打開,然後把MP3機子通過數據線連接到電腦上,插到電腦的USB介面上(數據線一般購買MP3機子時會提供給你)

2.在你的計算機桌面雙擊打開「我的電腦」

3.這時你就能看到我的電腦里出來一個可移動磁碟,雙擊打開

4.然後你就可以把你電腦里的已經從網上下載下來的MP3歌曲復制粘貼到你的MP3機子里了。

5.復制完畢後,在可移動磁碟上點右鍵 --> 彈出

6.拔掉數據線,OK了。

在復制粘貼的過程中。並不是只能對音樂文件進行操作。對別的文件進行這個步驟也行。這不就把他當U盤使了嗎?:)

❹ 數學思想·數學方法有哪些

1
、對應思想方法

對應是人們對兩個集合因素之間的聯系的一種思想方法,
小學數學一般
是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)
與表示具體的數是一一對應。

2
、假設思想方法

假設是先對題目中的已知條件或問題作出某種假設,
然後按照題中的已
知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確
答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可
以使要解決的問題更形象、具體,從而豐富解題思路。

3
、比較思想方法

比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手
段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量
變化前後的情況,可以幫助學生較快地找到解題途徑。

4
、符號化思想方法

用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數
學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量
之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表
達大量的信息。如定律、公式、等。

5
、類比思想方法

類比思想是指依據兩類數學對象的相似性,
有可能將已知的一類數學對
象的性質遷移到另一類數學對象上去的思想。
如加法交換律和乘法交換
小學各年級課件教案習題匯總
一年級二年級三年級四年級五年級
律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比
思想不僅使數學知識容易理解,
而且使公式的記憶變得順水推舟的自然
和簡潔。

6
、轉化思想方法

轉化思想是由一種形式變換成另一種形式的思想方法,
而其本身的大小

❺ 小學數學中常見的數學思想方法有哪些

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

❻ 高中數學的基本思想方法有哪些

1、函數方程思想

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組)。

然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程。

求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題。

經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解決問題中。

善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系。

構造出函數原型。另外,方程問題、不等式問題、集合問題、數列問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

2、數形結合思想

「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。

例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。

3、分類討論思想

當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。

4、方程思想

當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。

5、整體思想

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。

整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

6、化歸思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作圖等數學理論無不滲透著轉化的思想。

常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。

轉化思想亦可在狹義上稱為化歸思想。化歸思想就是將待解決的或者難以解決的問題A經過某種轉化手段,轉化為有固定解決模式的或者容易解決的問題B,通過解決問題B來解決問題A的方法。

7、隱含條件思想

沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。

8、類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。

9、建模思想

為了更具科學性,邏輯性,客觀性和可重復性地描述一個實際現象,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。

使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。

10、歸納推理思想

由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理。

另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。

❼ 小學數學里有哪些基本的數學思想方法

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

❽ 數學基本思想方法有哪些

1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。

2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

4、整體思想

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。

5、類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。

❾ 小學數學思想方法有哪些

1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。聯系的一種思想方法如直線上的點(數軸)與表示具體的數是一一對應。如直線上的點(數軸)與表示具體的數是一一對應。2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。具體,從而豐富解題思路。 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較,題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。知和未知數量變化前後的情況 4、符號化思想方法、用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。公式、 5、類比思想方法 類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。理解,而且使公式的記憶變得順水推舟的自然和簡潔。 6、轉化思想方法 轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。公式的變形等,在計算中也常用到甲乙甲乙 7、分類思想方法 分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若體現對數學對象的分類及其分類的標准整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。按能否被 2 整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。的分類有助於學生對知識的梳理和建構。 8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。 9、數形結合思想方法數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。助分析數量關系。 10、統計思想方法:統計思想方法:小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。 11、極限思想方法:極限思想方法:事物是從量變到質變的,事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長時,化圓為方」「化在講圓的面積和周長」時「化圓為方化圓的面積和周長化圓為方曲為直」的極限分割思路在觀察有限分割的基礎上想像它們的極限狀態,曲為直的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛的極限分割思盾轉化中萌發了無限逼近的極限思想。盾轉化中萌發了無限逼近的極限思想。 12、代換思想方法:代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。把椅子,他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了 4 張桌子和 9 把椅子,共用去 504 把椅子的價錢正好相等,桌子和椅子的單價各是多少?元,一張桌子和 3 把椅子的價錢正好相等,桌子和椅子的單價各是多少?13、可逆思想方法:可逆思想方法:它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,千米,千米,逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的 1/7,第二小時比第一小時多行了 16 千米,還有 94 千米,求,第二小時比第一小時多行了甲乙之距。甲乙之距。 14、化歸思維方法: 化歸思維方法:把有可能解決的或未解決的問題,通過轉化過程,化歸」。把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,歸結為一類以便解決可較易解決的問題,以求得解決,以求得解決,這就是「化歸。這就是化歸而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。新知能力的提高無疑是有很大幫助。15、變中抓不變的思想方法:變中抓不變的思想方法:在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共 630 本,其中科技書 20%,後來又買來一些科技書,這時科技書占 30%,又買來科技書多少本?,後來又買來一些科技書,這時科技書占,又買來科技書多少本? 16、數學模型思想方法:數學模型思想方法:所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。 17、整體思想方法:整體思想方法:對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法

❿ 數學思想方法有哪幾種

中學數學重要數學思想 函數方程思想 函數方程思想就是用函數、方程的觀點和方法處理變數或未知數之間的關系,從而解決問題的一種思維方式,是很重要的數學思想.1.函數思想:把某變化過程中的一些相互制約的變數用函數關系表達出來,並研究這些量間的相互制約關系,最後解決問題,這就是函數思想; 2.應用函數思想解題,確立變數之間的函數關系是一關鍵步驟,大體可分為下面兩個步驟:(1)根據題意建立變數之間的函數關系式,把問題轉化為相應的函數問題;(2)根據需要構造函數,利用函數的相關知識解決問題;(3)方程思想:在某變化過程中,往往需要根據一些要求,確定某些變數的值,這時常常列出這些變數的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想; 3.函數與方程是兩個有著密切聯系的數學概念,它們之間相互滲透,很多方程的問題需要用函數的知識和方法解決,很多函數的問題也需要用方程的方法的支援,函數與方程之間的辯證關系,形成了函數方程思想.數形結合思想 數形結合是中學數學中四種重要思想方法之一,對於所研究的代數問題,有時可研究其對應幾何的性質使問題得以解決(以形助數);或者對於所研究的幾何問題,可藉助於對應圖形的數量關系使問題得以解決(以數助形),這種解決問題的方法稱之為數形結合.1.數形結合與數形轉化的目的是為了發揮形的生動性和直觀性,發揮數的思路的規范性與嚴密性,兩者相輔相成,揚長避短.2.恩格斯是這樣來定義數學的:「數學是研究現實世界的量的關系與空間形式的科學」.這就是說:數形結合是數學的本質特徵,宇宙間萬事萬物無不是數和形的和諧的統一.因此,數學學習中突出數形結合思想正是充分把握住了數學的精髓和靈魂.3.數形結合的本質是:幾何圖形的性質反映了數量關系,數量關系決定了幾何圖形的性質.4.華羅庚先生曾指出:「數缺性時少直觀,形少數時難入微;數形結合百般好,隔裂分家萬事非.」數形結合作為一種數學思想方法的應用大致分為兩種情形:或藉助於數的精確性來闡明形的某些屬性,或者藉助於形的幾何直觀性來闡明數之間的某種關系.5.把數作為手段的數形結合主要體現在解析幾何中,歷年高考的解答題都有關於這個方面的考查(即用代數方法研究幾何問題).而以形為手段的數形結合在高考客觀題中體現.6.我們要抓住以下幾點數形結合的解題要領:(1) 對於研究距離、角或面積的問題,可直接從幾何圖形入手進行求解即可; (2) 對於研究函數、方程或不等式(最值)的問題,可通過函數的圖象求解(函數的零點,頂點是關鍵點),作好知識的遷移與綜合運用; (3) 對於以下類型的問題需要注意:可分別通過構造距離函數、斜率函數、截距函數、單位圓x2+y2=1上的點及餘弦定理進行轉化達到解題目的.分類討論的數學思想 分類討論是一種重要的數學思想方法,當問題的對象不能進行統一研究時,就需要對研究的對象進行分類,然後對每一類分別研究,給出每一類的結果,最終綜合各類結果得到整個問題的解答.1.有關分類討論的數學問題需要運用分類討論思想來解決,引起分類討論的原因大致可歸納為如下幾種:(1)涉及的數學概念是分類討論的; (2)運用的數學定理、公式、或運算性質、法則是分類給出的; (3)求解的數學問題的結論有多種情況或多種可能性; (4)數學問題中含有參變數,這些參變數的不同取值導致不同的結果的; (5)較復雜或非常規的數學問題,需要採取分類討論的解題策略來解決的.2.分類討論是一種邏輯方法,在中學數學中有極廣泛的應用.根據不同標准可以有不同的分類方法,但分類必須從同一標准出發,做到不重復,不遺漏 ,包含各種情況,同時要有利於問題研究.化歸與轉化思想 所謂化歸思想方法,就是在研究和解決有關數學問題時採用某種手段將問題通過變換使之轉化,進而達到解決的一種方法.一般總是將復雜的問題通過變化轉化為簡單的問題,將難解問題通過變換轉化為容易求解的問題,將未解決的問題轉化為已解決的問題.立體幾何中常用的轉化手段有 1.通過輔助平面轉化為平面問題,把已知元素和未知元素聚集在一個平面內,實現點線、線線、線面、面面位置關系的轉化; 2.平移和射影,通過平移或射影達到將立體幾何問題轉化為平面問題,化未知為已知的目的; 3.等積與割補; 4.類比和聯想; 5.曲與直的轉化; 6.體積比,面積比,長度比的轉化; 7.解析幾何本身的創建過程就是「數」與「形」之間互相轉化的過程.解析幾何把數學的主要研究對象數量關系與幾何圖形聯系起來,把代數與幾何融合為一體.

閱讀全文

與數學思想方法有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:704
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1317
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1022
大學物理實驗干什麼用的到 瀏覽:1448
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:829
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1606
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017