⑴ 有誰知道數學危機有幾次每次危機的內容是什麼有誰能說一下!
為了講清楚三次數學危機的來龍去脈,我們首先要說明什麼是數學危機。一般來講,危機是一種激化的、非解決不可的矛盾。從哲學上來看,矛盾是無處不在的、不可避免的,即便以確定無疑著稱的數學也不例外。
人類最早認識的是自然數。從引進零及負數就經歷過斗爭:要麼引進這些數,要麼大量的數的減法就行不通;同樣,引進分數使乘法有了逆運算——除法,否則許多實際問題也不能解決。但是接著又出現了這樣的問題,是否所有的量都能用整數之比來表示?於是發現無理數就導致了第一次數學危機,而危機的解決也就促使邏輯的發展和幾何學的體系化。
方程的解導致了虛數的出現,虛數從一開始就被認為是「不實的」。可是這種不實的數卻能解決實數所不能解決的問題,從而為自己爭得存在的權利。
幾何學的發展從歐幾里得幾何的一統天下發展到各種非歐幾何學也是如此。在十九世紀發現了許多用傳統方法不能解決的問題,如五次及五次以上代數方程不能通過加、減、乘、除、乘方、開方求出根來;古希臘幾何三大問題,即三等分任意角、倍立方體、化圓為方不能通過圓規、直尺作圖來解決等等。
這些否定的結果表明了傳統方法的局限性,也反映了人類認識的深入。這種發現給這些學科帶來極大的沖擊,幾乎完全改變了它們的方向。比如說,代數學從此以後向抽虛稿象代數學方面發展,而求解方程的根變成了分析及計算數學的課題。在第三次數學危機中,這種情況也多次出現,尤其是包含整數算術在內的形式系統的不完全性、許多問題的不可判定性都大大提高了人們的認識,也促進了數理邏輯的大發展。
這種矛盾、危機引起的發展,改變面貌,甚至引起革命,在數學發展歷史上是屢見不鮮的。第二次數學危機是由無窮小量的矛盾引起的,它反映了數學內部的有限與無窮的矛盾。數學中也一直貫穿著計算方法、分析方法在應用與概念上清楚及邏輯上嚴格的矛盾。在這方面,比較注意實用的數學家盲目應用。差猛孝而比較注意嚴密的數學家及哲學家則提出批評。只有這兩方面取得協調一致後,矛盾才能解決。後來算符演算及δ函數也重復了這個過程,開始是形式演算、任意應用,直到施瓦爾茲才奠定廣義函數論的嚴整系統。
對於第三次數學危機,有人認為只是數學基礎的危機,與數學無關。這種看法是片面的。誠然,問題涉及數理邏輯和集合論,但它一開始就牽涉到無窮集合,而現代數學如果脫離無窮集合就可以說寸步難行。因為如果只考慮有限集合或至多是可數的集合,那絕大部分數學將不復存在。而且即便這些有限數學的內容,也有許多問題要涉及無窮的方法,比如解決數論中的許多問題都要用知坦解析方法。由此看來,第三次數學危機是一次深刻的數學危機。
⑵ 第一次數學危機是什麼給數學發展帶來什麼
無理數的發現,引起了第一次數學危機。首先,對於全部依靠整數的畢氏哲學,這是一次致命的打擊。其次,無理數看來與常識似乎相矛盾。在幾瞎野何上的對應情況同樣也是令人驚訝的,因為與直觀相反,存在不可通約的線段,即沒有公共的量度單位的線段。由於畢氏學派關於比例定義假定了任何兩個同類量是可通約的,所以畢氏學派比例理論中的所有命題都局限在可通約的量上,這樣,他們的關於相似形的一般理論也失效了
這也反映出,直覺和經驗不一定靠得住,而推理證明才是可靠的。從此希臘人開始由「自明的」公理出發,經過演繹推理,並由此建立幾何磨森喊學體系,這不能不說是數學思想上一次巨大革命,這也是第一春襪次數學危機的自然產物。
⑶ 數學史上三次危機的歷史意義
三次數學危機實質上是西方數學發展過程中矛盾斗爭的結果,也能看出在西方社會,數學的文化精神已經進入到西方社會,是普通民眾所具有的精神。一旦當數學上的問題與社會意識發生矛盾時,便會引起全社會的爭論,進而產生了社會大危機。這些危機的解決只是需要對數學的再認識,再理解,在數學內部用純粹知識就可解決,但是它所折射出的社會文化系統的不同是需要我們中國人給予一定考慮的,為什麼古代中國數學就沒有這樣的危機呢???
三次危機一方面促進了數學的發展,另一方面也展示了西方數學在西方社會的文化地位,以及對西方人思維意識的影響。前者只需要數學發展歷程就可看出,而後者是需要我們進一步仔細思考的內容。
希望對樓主能有所幫助!!
⑷ 數學史上三次危機的歷史意義
第一次數學危機促成了公理咐派歷幾何與邏輯的誕生;第二次數學危機促成了分析基礎羨櫻理論的完善與集合論的創立;第三次數學危衡搜機促成了數理邏輯的發展與一批現代數學的產生.
⑸ 第一次數學危機是怎麼一回事大神們幫幫忙
第一次數學危機 [編輯本衫遲穗段] 從某種意義上來講,現代意義下的數學(也就是作為演繹系統的純粹數學)來源於古希臘的畢達哥拉斯學派。這個學派興旺的時期為公元前500年左右,它是一個唯心主義流派。他們重視自然及社會中不變因素的研究,把幾何、算術、天文學、音樂稱為「四藝」,在其中追求宇宙的和諧及規律性。他們認為「萬物皆數」,認為數學的知識是可靠的、准確的,而且可以應用於現實的世界。數學的知識是由於純粹的思維而獲得,並不需要觀察、直覺及日常經驗。 畢達哥拉斯的數是指整數,他們在數或卜學上的一項重大發現是證明了勾股定理。他們知道滿足直角三角形三邊長的一般公式,但由此也發現了一些直角三角形的三邊比不能用整數來表達,也就是勾長或股長與弦長是不可通約的。這樣一來,就否定了畢達哥拉斯學派的信條:宇宙間的一切現象都能歸結為整數或整數之比。 不可通約性的發現引起第一次數學危機。有人說,這種性質是希帕索斯約在公元前400年發現的,為此,他的同伴把他拋進大海。不過更有可能是畢達哥拉斯已經知道這種事實,而希帕索斯因泄密而被處死。不管怎樣,這個發現對古希臘的數學觀點有極大的沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之數卻可以由幾何量表示出來。整數的尊崇地位受到挑戰,於是幾何學開始在希臘數學中佔有特殊地位。 同時這也反映出,直覺和經驗不一定靠得住,而推理證明才是可靠的。從此希臘人開始由「自明的」公理出發,經過演繹推理,並由此建立幾何學體系,這不能不說是數學思想上一次巨大革命,這也是第一次數學危機的自然產物。 回顧以前的各種數學,無非都是「算」,也就是提供演算法。即使在古希臘,數學也是從實際出發,應用到實際問題中去的。比如泰勒斯預測日食,利用影子距離計算金字塔高度,測量船隻離岸距離等等,都是屬於計算技術范圍的。至旦衡於埃及、巴比倫、中國、印度等國的數學,並沒有經歷過這樣的危機和革命,所以也就一直停留在「算學」階段。而希臘數學則走向了完全不同的道路,形成了歐幾里得《幾何原本》的公理體系與亞里士多德的邏輯體系。
⑹ 第一次數學危機是怎麼回事
第一次數學危機:無理數的發現
大約公元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、音樂稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。
到了公元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於1872年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。 第一次數學危機對古希臘的數學觀點有極大沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!
⑺ 數學史上的危機帶來了什麼
發現無理數就導致了第一次數學危機,而危機的解決也就促使邏輯的發展和幾何學的體系化。
第二次數學危機是由無窮小量的矛盾引起的,它反映了數學內部的有限與無窮的矛盾。數學中也一直貫穿著計算方法、分析方法在應用與概念上清楚及邏輯上嚴格的矛盾。在這方面,比較注意實用的數學家盲目應用。而比較注意嚴密的數學家及哲學家則提出批評。只有這兩方面取得協調一致後,矛盾才能解決。後來算符演算及δ函數也重復了這個過程,開始是形式演算、任意應用,直到施瓦爾茲才奠定廣義函數論的嚴整系統。
對於第三次數御歲學危機,有人認為只是數學基礎的危機,與數學無關。這種看法是片面的。誠然,問題涉及數理邏輯和集合論,但它一開始就牽涉到橡拆者無窮集合,而現代數學如果脫離無窮集合就可以說寸步難行。因為如果只考慮有限集合或至多是可數的集合,那絕大部分數學將不復存在。而且即便這些梁薯有限數學的內容,也有許多問題要涉及無窮的方法,比如解決數論中的許多問題都要用解析方法。由此看來,第三次數學危機是一次深刻的數學危機。
⑻ 第一次數學危機是什麼
第一次數學危機
從某種意義上來講,現代意義下的數學,也就是作為演繹系統的純粹數學,來源予古希臘畢達哥拉斯學派。它是一個唯心主義學派,興旺的時期為公元前500年左右。他們認為,「萬物皆數」(指整數),數學的知識是可靠的、准確的,而且可以應用於現實的世界,數學的知識由於純粹的思維而獲得,不需要觀察、直覺和日常經驗。
整數是在對於對象的有限整合進行計算的過程中產生的抽象概念。日常生活中,不僅要計算單個的對象,還要度量各種量,例如長度、重量和時間。為了滿足這些簡單的度量需要,就要用到分數。於是,如果定義有理數為兩個整數的商,那麼由於有理數系包括所有的整數和分數,所以對於進行實際量度是足夠的。
有理數有一種簡單的幾何解釋。在一條水平直線上,標出一段線段作為單位長,如果令它的定端點和右端點分別表示數0和1,則可用這條直線上的間隔為單位長的點的集合來表示整數,正整數在0的右邊,負整數在0的左邊。以q為分母的分數,可以用每一單位間隔分為q等分的點表示。於是,每一個有理數都對應著直線上的一個點。
古代數學家認為,這樣能把直線上所有的點用完。但是,畢氏學派大約在公元前400年發現:直線上存在不對應任何有理數的點。特別是,他們證明了:這條直線上存在點p不對應於有理數,這里距離op等於邊長為單位長的正方形的對角線。於是就必須發明新的數對應這樣的點,並且因為這些數不可能是有理數,只好稱它們為無理數。無理數的發現,是畢氏學派的最偉大成就之一,也是數學史上的重要里程碑。
無理數的發現,引起了第一次數學危機。首先,對於全部依靠整數的畢氏哲學,這是一次致命的打擊。其次,無理數看來與常識似乎相矛盾。在幾何上的對應情況同樣也是令人驚訝的,因為與直觀相反,存在不可通約的線段,即沒有公共的量度單位的線段。由於畢氏學派關於比例定義假定了任何兩個同類量是可通約的,所以畢氏學派比例理論中的所有命題都局限在可通約的量上,這樣,他們的關於相似形的一般理論也失效了。
「邏輯上的矛盾」是如此之大,以致於有一段時間,他們費了很大的精力將此事保密,不準外傳。但是人們很快發現不可通約性並不是罕見的現象。泰奧多勒斯指出,面積等於3、5、6、……17的正方形的邊與單位正方形的邊也不可通約,並對每一種情況都單獨予以了證明。隨著時間的推移,無理數的存在逐漸成為人所共知的事實。
⑼ 「數學上的第一個危機」是什麼
由畢達哥拉斯學派成員的學生歐多克斯(Eudoxus)提出新的比例理論而暫時消除危機。
所謂的【第一次數學危機】
指的是無理數的發現(不可通約性的發現),引起了「邏輯上的矛盾」,許多當時的數學家都無法解釋,
在當時派仿的數學界來說,是一個極大的震撼,造成了所謂的【第一次數學危機】
其實,無理數的發唯數現,是畢氏學派的最偉大成就之一,也是數學史上的重要里程碑
第一次數學危機是怎樣解決的呢?
面對著事實,數學家展開廣闊的胸襟,把「無理數」引入數指羨首學的大家庭,令數學更豐富更完備,加添了無理數,數線終於被填滿,第一次數學危機也得以解決
非歐幾何學也由此誕生……
http://..com/question/258665829.html
http://..com/question/211776355.html
⑽ 數學史上發生過三次危機,這三次危機是怎麼回事
在數學歷史上,有三次大的危機深刻影響著數學的發展,三次數學危機分別是:無理數的發現、微積分的完備性、羅素悖論。
第一次數學危機
第一次數學危機發生在公元400年前,在古希臘時期,畢達哥拉斯學派對“數”進行了定義,認為任何數字都可以寫成兩個整數之商,也就是認為所有數字都是有理數。
羅素悖論通俗描述為:在某個城市中,有一位名譽滿城的理發師說:“我將為本城所有不給自己刮臉的人刮臉,我也只給這些人刮臉。”那麼請問理發師自己的臉該由誰來刮?
羅素悖論的提出,引發了數學上的又一次危機,數學家辛辛苦苦建立的數學大廈,最後發現基礎居然存在缺陷,數學家們紛紛提出自己的解決方案;直到1908年,第一個公理化集合論體系的建立,才彌補了集合論的缺陷。
雖然三次數學危機都已經得到了解決,但是對數學史的影響是非常深刻的,數學家試圖建立嚴格的數學系統,但是無論多麼小心,都會存在缺陷,包括後來發現的哥德爾不完備性定理。