❶ 初一上學期數學難題(三題,最好用初一的解答方法解答)
1.設原價為x
75%的原價+虧本的30元=進價
%90的原價-賺的15元=進價 進價=進價 利用等量關系列出以下方程:
0.75x+30=9x-15
0.75x-9x=-15-30
-0.15x=-45
x=300
2.設A服裝x元,則售出價為0.8(0.6x+x);則B服鍵裂雹裝成本價為(700-x)元,售出價為0.8【0.4(700-x)+(700-x)】
0.8(0.6x+x)+0.8【0.4(700-x)+(700-x)】—700=148
0.8*1.6x + 0.8【280-0.4x+700-x】源乎=848
1.28x+224-0.32x+560-0.8x=848
0.16x=64
x=400
B服裝為: 700-400=300
3.設稿帆乙數為x,則甲為4x ;丙為(x+1)
x+4x+(x+1)=1101
6x=1100
550
x=——
3
❷ 求初一數學的一些難題以及解法~
有理數練習
練習一(B級)
(一)計算題:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)
(二)用簡便方法計算:
(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,
求:(-X)+(-Y)+Z的值
(四)用">","0,則a-ba (C)若ba (D)若a<0,ba
(二)填空題:
(1)零減去a的相反數,其結果是_____________; (2)若a-b>a,則b是_____________數; (3)從-3.14中減去-π,其差應為____________; (4)被減數是-12(4/5),差是4.2,則減數應是_____________; (5)若b-a<-,則a,b的關系是___________,若a-b<0,則a,b的關系是______________; (6)(+22/3)-( )=-7
(三)判斷題:
(1)一個數減去一個負數,差比被減數小. (2)一個數減去一個正數,差比被減數小. (3)0減去任何數,所得的差總等於這個數的相反數. (4)若X+(-Y)=Z,則X=Y+Z (5)若a<螞缺0,b|b|,則a-b>0
練習二(B級)
(一)計算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.
(三)若a,b為有理數,且|a|<|b|試比較|a-b|和|a|-|b|的大小
(四)如果|X-1|=4,求X,並在數軸上觀察表示數X的點與表示1的點的距離.
練習三(A級)
(一)選擇題:
(1)式子-40-28+19-24+32的正確讀法是( ) (A)負40,負28,加19,減24與32的和 (B)負40減負28加19減負24加32 (C)負40減28加19減24加32 (D)負40負28加19減24減負32 (2)若有理數a+b+C<0,則( ) (A)三個數中最少有兩個是負數 (B)三個數中有且只有一個負數 (C)三個數中最少有一個是負數 (D)三個數中有兩個是正數或者有兩個是負數 (3)若m<0,則m和它悶洞辯的相反數的差的絕對值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中與X-y-Z訴值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)
(二)填空題:
(1)有理數的加減混合運算的一般步驟是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)當b0,(a+b)(a-1)>0,則必有( ) (A)b與a同號 (B)a+b與a-1同號 (C)a>1 (D)b1 (6)一個有理數和它的相反數的積( ) (A)符號必為正 (B)符號必為負 (C)一不小於零 (D)一定不大於零顫老 (7)若|a-1|*|b+1|=0,則a,b的值( ) (A)a=1,b不可能為-1 (B)b=-1,a不可能為1 (C)a=1或b=1 (D)a與b的值相等 (8)若a*B*C=0,則這三個有理數中( ) (A)至少有一個為零 (B)三個都是零 (C)只有一個為零 (D)不可能有兩個以上為零
(二)填空題:
(1)有理數乘法法則是:兩數相乘,同號__________,異號_______________,並把絕對值_____, 任何數同零相乘都得__________________. (2)若四個有理數a,b,c,d之積是正數,則a,b,c,d中負數的個數可能是______________; (3)計算(-2/199)*(-7/6-3/2+8/3)=________________; (4)計算:(4a)*(-3b)*(5c)*1/6=__________________; (5)計算:(-8)*(1/2-1/4+2)=-4-2+16=10的錯誤是___________________; (6)計算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根據是_______
(三)判斷題:
(1)兩數之積為正,那麼這兩數一定都是正數; (2)兩數之積為負,那麼這兩個數異號; (3)幾個有理數相乘,當因數有偶數個時,積為正; (4)幾個有理數相乘,當積為負數時,負因數有奇數個; (5)積比每個因數都大.
練習(四)(B級)
(一)計算題:
(1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24
(二)用簡便方法計算:
(1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)當a=-4,b=-3,c=-2,d=-1時,求代數式(ab+cd)(ab-cd)的值.
(四)已知1+2+3+......+31+32+33=17*33,計算下式
1-3+2-6+3-9-12+...+31-93+32-96+33-99的值
練習五(A級)
(一)選擇題:
(1)已知a,b是兩個有理數,如果它們的商a/b=0,那麼( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列給定四組數1和1;-1和-1;0和0;-2/3和-3/2,其中互為倒數的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整數,則( ) (A)|b|是a的約數 (B)|b|是a的倍數 (C)a與b同號 (D)a與b異號 (4)如果a>b,那麼一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1
(二)填空題:
(1)當|a|/a=1時,a______________0;當|a|/a=-1時,a______________0;(填>,0,則a___________0; (11)若ab/c0,則b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a為有理數,且a2>a,則a的取值范圍是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科學記數法表示106000,其中正確的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,則123.63等於( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理數,下列各式總能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)計算:(-1)1-(-2)2-(-3)3-(-4)4所得結果是( ) (A)288 (B)-288 (C)-234 (D)280
一 填空題
1.-(- )的倒數是_________,相反數是__________,絕對值是__________。
2.若|x|+|y|=0,則x=__________,y=__________。
3.若|a|=|b|,則a與b__________。
4.因為到點2和點6距離相等的點表示的數是4,有這樣的關系 ,那麼到點100和到點999距離相等的數是_____________;到點 距離相等的點表示的數是____________;到點m和點–n距離相等的點表示的數是________。
5.計算: =_________。
6.已知 ,則 =_________。
7.如果 =2,那麼x= .
8.到點3距離4個單位的點表示的有理數是_____________。
9.________________________范圍內的有理數經過四捨五入得到的近似數3.142。
10.小於3的正整數有_____.
11. 如果m<0,n>0,|m|>|n|,那麼m+n__________0。
12.你能很快算出 嗎?
為了解決這個問題,我們考察個位上的數為5的正整數的平方,任意一個個位數為5的正整數可寫成10n+5(n為正整數),即求 的值,試分析 ,2,3……這些簡單情形,從中探索其規律。
⑴通過計算,探索規律:
可寫成 ;
可寫成 ;
可寫成 ;
可寫成 ;
………………
可寫成________________________________
可寫成________________________________
⑵根據以上規律,試計算 =
13.觀察下面一列數,根據規律寫出橫線上的數,
- ; ;- ; ; ; ;……;第2003個數是 。
14. 把下列各數填在相應的集合內。
整數集合:{ ……}
負數集合:{ ……}
分數集合:{ ……}
非負數集合:{ ……}
正有理數集合:{ ……}
負分數集合:{ ……}
二 選擇題
15.(1)下列說法正確的是( )
(A)絕對值較大的數較大;
(B)絕對值較大的數較小;
(C)絕對值相等的兩數相等;
(D)相等兩數的絕對值相等。
16. 已知a<c<0,b>0,且|a|>|b|>|c|,則|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等於( )
A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c
17.下列結論正確的是( )
A. 近似數1.230和1.23的有效數字一樣
B. 近似數79.0是精確到個位的數,它的有效數字是7、9
C. 近似數3.0324有5個有效數字
D. 近似數5千與近似數5000的精確度相同
18.兩個有理數相加,如果和比其中任何加數都小,那麼這兩個加數( )
(A)都是正數 (B)都是負數 (C)互為相反數 (D)異號
19. 如果有理數 ( )
A. 當
B.
C.
D. 以上說法都不對
20.兩個非零有理數的和為正數,那麼這兩個有理數為( )
(A)都是正數 (B)至少有一個為正數
(C)正數大於負數 (D)正數大於負數的絕對值,或都為正數。
三計算題
21. 求下面各式的值(-48)÷6-(-25)×(-4)
(2)5.6+[0.9+4.4-(-8.1)];
(3)120×( );
(4)
22. 某單位一星期內收入和支出情況如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那麼,這一星期內該單位是盈餘還是虧損?盈餘或虧損多少元?
提示:本題中正數表示收入,負數表示支出,將七天的收入或支出數相加後,和為正數表示盈餘,和為負數表示虧損。
23. 某地一周內每天的最高氣溫與最低氣溫記錄如下表,哪天的溫差最大哪天的溫差最小?
星期 一 二 三 四 五 六 七
最高氣溫 10ºC 11ºC 12ºC 9ºC 8ºC 9ºC 8ºC
最低氣溫 2ºC 0ºC 1ºC -1ºC -2ºC -3ºC -1ºC
24、正式排球比賽,對所使用的排球的重量是有嚴格規定的。檢查5個排球的重量,超過規定重量的克數記作正數,不足規定重量的克數記作負數,檢查結果如下表:
+15 -10 +30 -20 -40
指出哪個排球的質量好一些(即重量最接近規定重量)?你怎樣用學過的絕對值知識來說明這個問題?
25. 已知 ; ;
(1)猜想填空:
(2)計算①
②23+43+63+983+……+1003
26.探索規律將連續的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
… …
(1) 十字框中的五個數的和與中間的數和16有什麼關系?
(2) 設中間的數為x ,用代數式表示十字框中的五個數的和.
(3) 若將十字框上下左右移動,可框住另外的五位數,其它五位數的和能等於201嗎?如能,寫出這五位數,如不能,說明理由。
27.設y=ax5+bx3+cx-5,其中a,b,c,為常數,已知當x= -5時,y=7,求當x=5時,求y的值。
有理數練習題參考答案
一 填空題
1. 4, - , .提示:題雖簡單,但這類概念題在七年級的考試中幾乎必考。
2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0.
3.相等或者互為相反數。提示:互為相反數的絕對值相等 。
4. 549.5, , .提示:到數軸上兩點相等的數的中點等於這兩數和的一半.
5. 0.提示:每相鄰的兩項的和為0。
6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8.
7. x-3=±2。x=3±2,x=5或x=1.
8. -1或7。提示:點3距離4個單位的點表示的有理數是3±4。
9. 3.1415-3.1424.提示:按照四捨五入的規則。
10.1,2.提示:大於零的整數稱為正整數。
11. <0.提示:有理數的加法的符號取決於絕對值大的數。
12. =5625=100×5×(5+1)+25; =7225=100×8×(8+1)+25;
=100×10×(10+1)+25=11025.
13. , , .提示:這一列數的第n項可表示為(-1)n .
14. 提示:(1)集合是指具有某一特徵的一類事物的全體,注意不要漏掉數0,題目中只是具體的幾個符合條件的數,只是一部分,所以通常要加省略號。
(2)非負數表示不是負數的所有有理數,應為正數和零,那麼非正數表示什麼呢?(答:負數和零)
答案:整數集合:{ ……}
負數集合:{ ……}
分數集合:{ ……}
非負數集合:{ ……}
正有理數集合:{ ……}
負分數集合:{ ……}
二 選擇題
15. D.提示:對於兩個負數來說,絕對值小的數反而大,所以A錯誤。對於兩個正數來說,絕對值大的數大,所以B錯誤。互為相反數的兩個數的絕對值相等。
16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c
17. C.提示:有效數字的定義是從左邊第一位不為零的數字起,到右邊最後一個數字結束。18.B
19.C 提示:當n為奇數時, , <0. 當n為偶數時, , <0.所以n為任意自然數時,總有 <0成立.
20. D.提示:兩個有理數想加,所得數的符號由絕對值大的數覺得決定。
三計算題
21. 求下面各式的值
(1)-108
(2)19 .提示:先去括弧,後計算。
(3)-111 .提示: 120×( )
120×( )
=120×(- )+120× -120×
= -111
(4) .提示;
=1- +
=
22. 提示:本題中正數表示收入,負數表示支出,將七天的收入或支出數相加後,和為正數表示盈餘,和為負數表示虧損。
解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103)
=[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)]
=(+1332.2)+(-1125)
=+207.2
故本星期內該單位盈餘,盈餘207.2元。
23. 提示:求溫差利用減法,即最高溫度的差,再比較它們的大小。
解:周一溫差:10-2=8(ºC)
周二溫差:11-0=11(ºC)
周三溫差:12-1=11(ºC)
周四溫差:9-(-1)=10(ºC)
周五溫差:8-(-2)=10(ºC)
周六溫差:9-(-3)=12(ºC)
周日溫差:8-(-1)=9(ºC)
所以周六溫差最大,周一溫差最小。
24、
解:第二隻排球質量好一些,利用這些數據的絕對值的大小來判斷排球的質量,絕對值越小說明越接近規定重量,因此質量也就好一些。
25.
(1) (2)①25502500;提示:原式=
②原式=
=23×13+23×23+23×33+23×43+23×53+……+23×503
=23(13+23+33+43+53+……+503)
=8×
=13005000
26.
(1) 十字框中的五個數的和等於中間的5倍。
(2) 5x
(3) 不能,假設5x=201.x=40.2.不是整數.所以不存在這么一個x.
27.y=ax5+bx3+cx-5,y+5= ax5+bx3+cx,當x=-5時,y+5=12.
-(y+5)=-ax5-bx3-cx=a(-x)5+b(-x)3+c(-x)
∴當x=5時,a(-5)5+b(-5)3+c(-5)=-12;
a(-5)5+b(-5)3+c(-5)-5= -17
❸ 七年級數學難題(解答題)及答案
1. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
小學數學應用題綜合訓練(06)
51. 自動扶梯以均勻的速度向上行駛,一男孩與一女孩同時從自動扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27級到達扶梯的頂部,而女孩走了18級到達頂部.問扶梯露在外面的部分有多少級?
52. 兩堆蘋果一樣重,第一堆賣出2/3,第二堆賣出50千克,如果第一堆剩下的蘋果比第二堆剩下的蘋果少,那麼兩堆剩下的蘋果至少有多少千克?
53. 甲、乙兩車同時從A地出發,不停的往返行駛於A、B兩地之間.已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都雜途中C地,甲車的速度是乙車的幾倍?
54. 一隻小船從甲地到乙地往返一次共用2小時,回來時順水,比去時的速度每小時多行8千米,因此第二小時比第一小時多行6千米.求甲、乙兩地的距離.
55. 甲、乙兩車分別從A、B兩地出發,並在A,B兩地間不斷往返行駛.已知甲車的速度是15千米/小時,甲、乙兩車第三次相遇地點與第四次相遇地點相差100千米.求A、B兩地的距離.
56. 某人沿著向上移動的自動扶梯從頂部朝底下用了7分30秒,而他沿著自動扶梯從底朝上走到頂部只用了1分30秒.如果此人不走,那麼乘著扶梯從底到頂要多少時間?如果停電,那麼此人沿扶梯從底走到頂要多少時間?
57. 甲、乙兩個圓柱體容器,底面積比為5:3,甲容器水深20厘米,乙容器水深10厘米.再往兩個容器中注入同樣多的水,使得兩個容器中的水深相等.這時水深多少厘米?
58. A、B兩地相距207千米,甲、乙兩車8:00同時從A地出發到B地,速度分別為60千米/小時,54千米/小時,丙車8:30從B地出發到A地,速度為48千米/小時.丙車與甲、乙兩車距離相等時是幾點幾分?
59. 一個長方形的周長是130厘米,如果它的寬增加1/5,長減少1/8,就得到一個相同周長的新長方形.求原長方形的面積.
60. 有一長方形,它的長與寬的比是5:2,對角線長29厘米,求這個長方形的面積.
小學數學應用題綜合訓練(07)
61. 有一個果園,去年結果的果樹比不結果的果樹的2倍還多60棵,今年又有160棵果樹結了果,這時結果的果樹正好是不結果的果樹的5倍.果園里共有多少棵果樹?
62. 小明步行從甲地出發到乙地,李剛騎摩托車同時從乙地出發到甲地.48分鍾後兩人相遇,李剛到達甲地後馬上返回乙地,在第一次相遇後16分鍾追上小明.如果李剛不停地往返於甲、乙兩地,那麼當小明到達乙地時,李剛共追上小明幾次?
63. 同樣走100米,小明要走180步,父親要走120步.父子同時同方向從同一地點出發,如果每走一步所用的時間相同,那麼父親走出450米後往回走,還要走多少步才能遇到小明?
64. 一艘輪船在兩個港口間航行,水速為6千米/小時,順水航行需要4小時,逆水航行需要7小時,求兩個港口之間的距離.
65. 有甲、乙、丙三輛汽車,各以一定的速度從A地開往B地,乙比丙晚出發10分鍾,出發後40分鍾追上丙;甲比乙又晚出發10分鍾,出發後60分鍾追上丙,問甲出發後幾分鍾追上乙?
66. 甲、乙合作完成一項工作,由於配合的好,甲的工作效率比單獨做時提高1/10,乙的工作效率比單獨做時提高1/5,甲、乙合作6小時完成了這項工作,如果甲單獨做需要11小時,那麼乙單獨做需要幾小時?
67. A、B、C、D、E五名學生站成一橫排,他們的手中共拿著20面小旗.現知道,站在C右邊的學生共拿著11面小旗,站在B左邊的學生共拿著10面小旗,站在D左邊的學生共拿著8面小旗,站在E左邊的學生共拿著16面小旗.五名學生從左至右依次是誰?各拿幾面小旗?
68. 小明在360米長的環行的跑道上跑了一圈,已知他前一半時間每秒跑5米,後一半時間每秒跑4米,問他後一半路程用了多少時間?
69. 小英和小明為了測量飛駛而過的火車的長度和速度,他們拿了兩塊秒錶,小英用一塊表記下火車從他面前通過所花的時間是15秒,小明用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是18秒,已知兩根電線桿之間的距離是60米,求火車的全長和速度.
70. 小明從家到學校時,前一半路程步行,後一半路程乘車;他從學校到家時,前1/3時間乘車,後2/3時間步行.結果去學校的時間比回家的時間多20分鍾,已知小明從家到學校的路程是多少千米?
小學數學應用題綜合訓練(08)
71. 數學練習共舉行了20次,共出試題374道,每次出的題數是16,21,24問出16,21,24題的分別有多少次?
72. 一個整數除以2餘1,用所得的商除以5餘4,再用所得的商除以6餘1.用這個整數除以60,余數是多少?
73. 少先隊員在校園里栽的蘋果樹苗是梨樹苗的2倍.如果每人栽3棵梨樹苗,則餘2棵;如果每人栽7棵蘋果樹苗,則少6棵.問共有多少名少先隊員?蘋果和梨樹苗共有多少棵?
74. 某人開汽車從A城到B城要行200千米,開始時他以56千米/小時的速度行駛,但途中因汽車故障停車修理用去半小時,為了按時到達,他必須把速度增加14千米/小時,跑完以後的路程,他修車的地方距離A 城多少千米?
75. 甲、乙兩人分別從A、B兩地同時出發,相向而行,乙的速度是甲的2/3,兩人相遇後繼續前進,甲到達B地,乙到達A地立即返回,已知兩人第二次相遇的地點距離第一次相遇的地點是3000米,求A、B兩地的距離.
76. 一條船往返於甲、乙兩港之間,已知船在靜水中的速度為9千米/小時,平時逆行與順行所用時間的比為2:1.一天因下雨,水流速度為原來的2倍,這條船往返共用10小時,問甲、乙兩港相距多少千米?
77. 某學校入學考試,確定了錄取分數線,報考的學生中,只有1/3被錄取,錄取者平均分比錄取分數線高6分,沒有被錄取的同學其平均分比錄取分數線低15分,所有考生的平均分是80分,問錄取分數線是多少分?
78. 一群學生搬磚,如果有12人每人各搬7塊,其餘的每人搬5塊,那麼最後餘下148塊;如果有30人每人各搬8塊,其餘的每人搬7塊,那麼最後餘下20塊.問學生共有多少人?磚有多少塊?
79. 甲、乙兩車分別從A、B兩地同時相向而行,已知甲車速度與乙車速度之比為4:3,C地在A、B之間,甲、乙兩車到達C地的時間分別是上午8點和下午3點,問甲、乙兩車相遇是什麼時間?
80. 一次棋賽,記分方法是,勝者得2分,負者得0分,和棋兩人各得1分,每位選手都與其他選手各對局一次,現知道選手中男生是女生的10倍,但其總得分只為女生得分的4.5倍,問共有幾名女生參賽?女生共得幾分?
小學數學應用題綜合訓練(09)
81. 有若干個自然數,它們的算術平均數是10,如果從這些數中去掉最大的一個,則餘下的算術平均數為9;如果去掉最小的一個,則餘下的算術平均數為11,這些數最多有多少個?這些數中最大的數最大值是幾?
82. 某班有少先隊員35人,這個班有男生23人,這個班女生少先隊員比男生非少先隊員多幾人?
83. 小東計劃到周口店參觀猿人遺址.如果他坐汽車以40千米/小時的速度行駛,那麼比騎車去早到3小時,如果他以8千米/小時的速度步行去,那麼比騎車晚到5小時,小東的出發點到周口店有多少千米?
84. 甲、乙兩船在相距90千米的河上航行,如果相向而行,3小時相遇,如果同向而行則15小時甲船追上乙船.求在靜水中甲、乙兩船的速度.
85. 二年級兩個班共有學生90人,其中少先隊員有71人,一班少先隊員占本班人數的75%,二班少先隊員占本班人數的5/6.一班少先隊員人數比二班少先隊員人數多幾人?
86. 一個容器中已注滿水,有大、中、小三個球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,現知道每次從容器中溢出水量的情況是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三個球的體積之比.
87. 某人翻越一座山用了2小時,返回用了2.5小時,他上山的速度是3000米/小時,下山的速度是4500米/小時.問翻越這座山要走多少米?
88. 鋼筋原材料每根長7.3米,每套鋼筋架子用長2.4米、2.1米和1.5米的鋼筋各一段.現需要綁好鋼筋架子100套,至少要用去原材料多少根?
89. 有一塊銅鋅合金,其中銅和鋅的比2:3.現知道再加入6克鋅,熔化後共得新合金36克,新合金中銅和鋅的比是多少?
90. 小明通常總是步行上學,有一天他想鍛煉身體,前1/3路程快跑,速度是步行速度的4倍,後一段的路程慢跑,速度是步行速度的2倍.這樣小明比平時早35分到校,小明步行上學需要多少分鍾?
小學數學應用題綜合訓練(10)
91. 甲、乙、丙三人,甲的年齡比乙的年齡的2倍還大3歲,乙的年齡比丙的年齡的2倍小2歲,三個人的年齡之和是109歲,分別求出甲、乙、丙的年齡.
92. 快車以60千米/小時的速度從甲站向乙站開出,1.5小時後,慢車以40千米/小時的速度從乙站行甲站開出,.兩車相遇時,相遇點離兩站的中點70千米.甲、乙兩站相距多少千米?
93. 甲、乙兩車先後離開學校以相同的速度開往博物館,已知8:32分甲車與學校的距離是乙車與學校距離的3倍,8:39分甲車與學校的距離是乙車與學校距離的2倍,求甲車離開學校的時間.
94. 有一個工作小組,當每個工人在各自的工作崗位上工作時,7小時可生產一批零件,如果交換工人甲、乙的崗位,其他人不變,那麼可提前1小時,完成這批零件,如果交換工人丙、丁的崗位,其他人不變,也可提前1小時,問如果同時交換甲與乙、丙與丁的崗位,其他人不變,那麼完成這批零件需多長的時間.
95. 用10塊長7厘米、寬5厘米、高3厘米的長方體積木,拼成一個長方體,這個長方體的表面積最小是多少?
96. 公圓只售兩種門票:個人票每張5元,10人一張的團體票每張30元,購買10張以上的團體票的可優惠10%.(1)甲單位45人逛公園,按以上規定買票,最少應付多少錢?(2)乙單位208人逛公園,按以上的規定買票,最少應付多少錢?
97. 甲、乙、丙三人,參加一次考試,共得260分,已知甲得分的1/3,乙得分的1/4與丙得分的一半減去22分都相等,那麼丙得分多少?
98. 一項工程,甲、、乙兩人合作4天後,再由乙單獨做5天完成,已知甲比乙每天多完成這項工程的1/30.甲、乙單獨做這項工程各需要幾天?
99. 有長短兩支蠟燭,(相同時間中燃燒長度相同),它們的長度之和為56厘米,將它們同時點燃一段時間後,長蠟燭同短蠟燭點燃前一樣長,這時短蠟燭的長度又恰好是長蠟燭的2/3.點燃前長蠟燭有多長?
100. 一批蘋果平均分裝在20個筐中,如果每筐多裝1/9,可省下幾只筐?
小學數學應用題綜合訓練(11)
101. 小明買了1支鋼筆,所用的錢比所帶的總錢數的一半多0.5元;買了1支圓珠筆,所用的錢比買鋼筆後餘下的錢的一半少0.5元;又買了2.8元的本子,最後剩下0.8元.小明帶了多少元錢?
102. 兒子今年6歲,父親10年前的年齡等於兒子20年後的年齡.當父親的年齡恰好是兒子年齡的2倍時是在公元哪一年?
103. 在一條長12米的電線上,黃甲蟲在8:20從右端以每分鍾15厘米的速度向左端爬去;8:30紅甲蟲和藍甲蟲從左端分別以每分鍾13厘米和11厘米的速度向右端爬去,紅甲蟲在什麼時刻恰好在藍甲蟲和黃甲蟲的中間?
104. 一支解放軍部隊從駐地乘車趕往某地抗洪搶險,如果將車速比原來提高1/9,就可比預定的時間20分鍾趕到;如果先按原速度行駛72千米,再將車速比原來提高1/3,就可比預定的時間提前30分鍾趕到.這支解放軍部隊的行程是多少千米?
105. 一隻船從甲碼頭到乙碼頭往返一次共用4小時,回來時順水比去時每小時多行12千米.因此後2小時比前2小時多行18千米,那麼甲、乙兩個碼頭距離是幾千米?
106. 甲、乙兩個班的學生人數的比是5:4,如果從乙班轉走9名學生,那麼甲班就比乙班人數多2/3.這時乙班有多少人?
107. 甲、乙兩堆煤共重78噸,從甲堆運出25%到乙堆,則乙堆與甲堆的重量比是8:5.原來各有多少噸煤?
108. 一件工作,甲單獨做要20天完成,乙單獨做要12天完成,如果這件工作先由甲隊做若干天,再由乙隊做完,兩個隊共用了14天,甲隊做了幾天?
109. 某電機廠計劃生產一批電機,開始每天生產50台,生產了計劃的1/5後,由於技術改造使工作效率提高60%,這樣完成任務比計劃提前了3天,生產這批電機的任務是多少台?
110. 兩個數相除商9餘4,如果被除數、除數都擴大到原來的3倍.那麼被除數、除數、商、余數之和等於2583.原來的被除數和除數各是多少?
小學數學應用題綜合訓練(12)
111. 在一條筆直的公路上,甲、乙兩地相距600米,A每小時走4千米,B每小時走5千米.上午8時,他們從甲、乙兩地同時相向出發,1分鍾後,他們都調頭向相反的方向走,就是依次按照1,3,5,7……連續奇數分鍾的時候調頭走路.他們在幾時幾分相遇?
112. 有兩個工程隊完成一項工程,甲隊每工作6天後休息1天,單獨做需要76天完工;乙隊每工作5天後休息2天,單獨做需要89天完工,照這樣計算,兩隊合作,從1998年11月29日開始動工,到1999年幾月幾日才能完工?
113. 一次數學競賽,小王做對的題占題目總數的2/3,小李做錯了5題,兩人都做錯的題數占題目總數的1/4,小王做對了幾道題?
114. 有100枚硬幣(1分、2分、5分),把其中2分硬幣全換成等值的5分硬幣,硬幣總數變成79個,然後又把其中1分硬幣全換成等值的5分硬幣,硬幣總數變成63個,那麼原有2分及5分硬幣共值幾分?
115. 甲、乙兩物體沿環形跑道相對運動,從相距150米(環形跑道上小弧的長)的兩點出發,如果沿小弧運動,甲和乙第10秒相遇,如果沿大弧運動,經過14秒相遇.已知當甲跑完環形跑道一圈時,乙只跑90米.求環形跑道的周長及甲、乙兩物體運動的速度?
❹ 初一數學難題兩道,求解題方法
1.
看著復雜其實不難,是-2400嗎?
-2400*(1-1/2)*(1-1/3)*....*(1-1/60)
=-2400*(1/2*2/3*...*59/60)
=-2400*1/60
=-40
2.
這個題,其實就是要找到一個分母,
這個分母至少要有11個因數
1-91,只有72的因數超過11個
72的因數:1,2,3,4,6,8,9,12,18,24,搜哪36,72
首先去掉備蔽72,再從中選出10個,進行加減運算,世滾碼得出-72
(-2-6-8-9+3+4+18-12-24-36)=-72
所以:
-1/36-1/12-1/9-1/8+1/24+1/18+1/4-1/6-1/3-1/2=-1
❺ 初一數學難題解答
1.解:設甲做了X天,乙做激哪老了14-X天
x/20+(14-x)/12=1
x/20+14/12-x/12=1
X=5
14-X=14-5=9
答:甲.乙各做5天明升和緩氏9天.
2.解:設老大出錢X元,依次為Y,Z元.
X=0.5*(Y+Z+6.5)
Y=1/3*(X+Z+6.5)
Z=0.25*(X+Y+6.5)
解得X=10,Y=7.5,Z=6
10+7.5+6+6.5=30(萬元)
答:.............
❻ 初一怎樣能快速做對數學難題
要有那麼個過程的。在基礎還不錯的前提下,要抽出多餘的時間專門的找一些難題大枝團做。要靠自己的思考把它做出來
不要輕易搭猜地去問老師,除滾橘非一道題想了一小時還沒頭緒才去問老師。
我以前就是這么做的,堅持一段時間就會有效果了。。。。
❼ 初一數學考試中遇到難題怎麼辦怎樣才能做出來
仿滑難題都是建立在穩固的基礎上的,數學公式一定要會,如果不會公式對於我我們做提示有一定困難的。所以你要講那些基本概念和基本公式都要熟記於心。學習數學主要還是在於解題備知臘方法的積累猛基,不同的題型有不同的解題方法,只要你多多總結解題方法,這樣數學成績會有很大的提高的。
❽ 初一數學的題怎麼這么難啊有啥技巧呢
初中數學蠻簡單的
把公式記牢,這是基礎,
課上聽講,這最關鍵,最怕課上不聽講課下用很長時間來彌補,用資料自己死扣,太浪費時間,
還有就是要用做題去深刻體會,運用自如,記住不能懼怕難題,碰到難題一定要思考,不能還沒做就想著我一定做不出來,這最可怕,也最致命。當你做出幾道難一些的題就會找到感覺,也就不會再懼怕難題了,慢慢的就會產生興趣,成績也就會好了。
還有就是要找做題的感覺,技巧,這得靠自己積累,別人的方法也不一定適合你,比如考試時遇到難題先放過,最後再做頭腦比較活躍,就能做出來,另外你初一學到的知識還少,遇到不會的題可以回憶賣卜以前學過中瞎穗那些知識,老師說的哪些知識點在這道題里邊可能用到,完全能過左出來。
我覺得最重要神並的是思想上不要懼怕他,初一不需要什麼高智商,當你題做多了,自然就會有做難題的沖動,慢慢會產生興趣。
祝你成績越來越棒!
❾ 初一、初二數學難題(要答案和解題方法)
<p>1、如圖,在梯形ABCD中,一直線分別交BA、DC的延長線於E、J,分別交AD、BD、BC於F、G、H、I,已知EF=FG=GH=HI=IJ,則ABCD
等於()</p>
<p>A.五分之二
B. 二分之一
C、五分之三 D、三分之二</p>
<p>根據平行線定理可得EA=1/4
DJ,EB=2 /3
DJ,EA=3 /2
CJ,則設CJ=2,即可求得AB、CD的長,即可求得AB:CD即可解題.</p>
<p>解:∵AB∥CD,
∴EA=1 /4 DJ,EB=2 /3 DJ,EA=3 /2 CJ,
設CJ=2,則EA=3,DJ=12,EB=8,AB=5,CD=10,
∴AB CD =1 /2 .
故選 B.</p>
<p>2、如圖,在Rt△ABC中,∠C=90°,AD是∠CAB的平分線交BC於點D,過點D作DE⊥AD交AB於點E,過點E作EF⊥BC,EG⊥ED,交BC分別為點F,G,過點G作GH⊥EG交AB於點H,過點H作HI⊥BC,HJ⊥GH,交BC分別為點I,J,若三角形ACD與三角形DEF的面積分別為2和1,則三角形GHJ的面積=3/8 </p>
<p> </p>
<p></p>
<p> </p>
<p>解:由題意知:Rt△ACD∽Rt△DEF∽Rt△EFG∽Rt△GHJ,</p>
<p>∵△ACD與△DEF的面積分別為中困伏2和1,即△DEF與△ACD的面積的比是1:2.</p>
<p>即相似賣攜比為二分之根號二 ,</p>
<p>故三角形GHJ的面積為3/ 8 </p>
<p> 3、</p>
<p>已知:在梯形ABCD中,AD∥BC,AB=DC,E,F分別是AB和BC邊上的點.</p>
<p>(1)如圖①,以EF為對稱軸翻摺梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;</p>
<p>(2)如圖②,連接EF並延長與DC的延長線交於點G,如果FG=k•EF(k為正數),試猜想BE與CG有何數量關系寫出你的結論並證明之</p>
<p></p>
<p> </p>
<p>解:(1)由題意,有△BEF≌△DEF.</p>
<p>∴BF=DF</p>
<p>如圖,過點A作AG⊥BG於點G.則四邊形AGFD是矩形.</p>
<p>∴AG=DF,GF=AD=4.</p>
<p>在Rt△ABG和Rt△DCF中,</p>
<p>∵AB=DC,AG=DF,</p>
<p>∴Rt△ABG≌Rt△DCF.(HL)</p>
<p>∴BG=CF</p>
<p>∴BG=1 /2 (BC-GF)=1 /2 (8-4)=2.</p>
<p>∴DF=BF=BG+GF=2+4=6</p>
<p>∴S梯形ABCD=1 /2 (AD+BC)•DF=1 /2 ×(4+8)×6=36</p>
<p>(2)猜想:CG=k•BE(或BE=1 /K CG)</p>
<p>證明:如圖,過點E作EH∥CG,交BC於點H.</p>
<p>則∠FEH=∠FGC.</p>
<p>又∠EFH=∠GFC,</p>
<p>∴△EFH∽△GFC.</p>
<p>∴EF GF =EH GC ,<尺豎/p>
<p>而FG=k•EF,即GF EF =k.</p>
<p>∴EH GC =1 k 即CG=k•EH</p>
<p>∵EH∥CG,∴∠EHB=∠DCB.</p>
<p>而ABCD是等腰梯形,∴∠B=∠DCB.</p>
<p>∴∠B=∠EHB.∴BE=EH.</p>
❿ 初一數學遇到難題怎麼辦怎樣才能做出來
復習已學過的知識,多做練習,爭取學會舉一反三。
再還有困難的話,就去請教老師同學。弊顫
還沒能解決的話,就來網路知道這里提問。會有無數熱心肢岩網友來幫助租飢敗你的。
祝你成功。