⑴ 數學幾何輔助線方法(初二)
作輔助線的方法和技巧
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點,連結則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經常要作平行線。
圓外若有一切線,切點圓心把線連。
如果兩圓內外切,經過切點作切線。
兩圓相交於兩點,一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線
參考資料:http://..com/question/4196979.html
⑵ 初二幾何畫輔助線的技巧
初二數學幾何輔助線解題技巧如下:
三角形圖中有角平分線,碼激可向兩邊作垂線。也可遲祥襪將圖對折看,對稱以後關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
在一個三角宴敗形中,兩邊之和大於第三邊,兩邊之差小於第三邊。
那麼不在一個三角形中的線段,運用截長、補短的方法添加輔助線,通過三角形的全等證明,得到線段的轉化。這樣,線段的和差數量關系,可以出現在一個三角形中了。
⑶ 數學輔助線做法技巧初中
數學輔助線的做法技巧如下:
截長補短法是三角形全等證明中的一種常見輔助線做法:
截長:在較長線段中截取一段等於另兩條中的一條,然後證明剩下部分等於另一條;
補短:將一條舉洞較短線段延長,延長部分等於另一條較短線段,然後證明新線段等於較長線段;或延長條較短線段等 於較長線段,然後證明延長部正雹枯分等於另一條較短線段。
一般來說,出現以下幾種情況需要考慮截長補短。當出現上面提到的證明兩條線段的數量關系,三條或四條線段之間的和、差關系時,我們可以使用截長補短法來進行輔助線的添加;
當題目條件中出現這種數量關系時,也可以使用截長補短法進行添輔助線;碰到證明兩角相加等於180°的題型其實也可以使用截長補短法。
中點是幾何圖形中比較特殊的點,圖形中出現中點, 我們學過哪些圖形的性質與中點有關?(1)等腰三角肆兆形三線合一;
(2)直角三角形斜邊上的中線等於斜邊的一半;
(3)8字型全等圖形。
中點還可以與中心對稱相聯系.解答中點問題的關鍵是通過聯想恰當地添加輔助線,如作倍長中線、作直角三角形斜邊上的中線、構造三角形中位線、構造中心對稱圖形等。
⑷ 初中數學如何做輔助線
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點,連結則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經常要作平行線。
圓外若有一切線,切點圓心把線連。
如果兩圓內外切,經過切點作切線。
兩圓相交於兩點,一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。
解題還要多心眼,經常總結方法顯。
切勿盲目亂添線,方法靈活應多變。
分析綜合方法選,困難再多也會減
⑸ 初中數學幾何做輔助線技巧
輔助線一直都是解決幾何問題中不可或缺的,通過輔助線的有效添加,不僅可以使得相應問題得到更好、更便捷的解答,也能夠給學生留下更深刻的印象。下面是我為大家整理的關於初中數學幾何做輔助線技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
1初中數學幾何做輔助線技巧
輔助線在三角形中的科學運用
對於三角形中輔助線的添加來講,主要是結合問題特點與需求來進行輔助線的科學運用。例如,在無法利用現有條件將三角形三邊關系直接證明出來時,可以將其中一邊延長,也可以通過將其兩點連接來構成三角形,以此來得出其線段在一個或是多個三角形中的結論,然後再利用三角形三邊的不等關系來進行證明;又如:在無法利用現有條件將三角形外角大於任何不與其相鄰的內角這一定義直接證明出來時,就可以引導學生將某一邊延長,或者是通過連接其中兩點構成三角形,以此來讓其小角位於其圖形的內角,之後再證明出其大角處於其三角形的外角位置,在此基礎上再運用相應外角定理來最終解答。此外,若題目中給出了平分線時,通常都是在其角的兩邊取相同的線段來構成全等三角形等。
上述只是 總結 了三角形輔助線比較常見的添加方式,但是對於數學輔助線的應用來講,通常都是法無定法的,因此,要想將輔助線的積極作用充分發揮出來,並在解題中實現科學靈活運用,往往還是需要在實踐解題練習中不斷歸納與總結,不僅可以單獨添加,也可以結合實際情況,進行恰當的組合運用,也只有這樣在解答相應題目過程中才能夠真正做到有的放矢,才能夠引導學生真正掌握其運用規律與技巧,因此,出了總結、歸納外,其數學教師還應結合學生實際認知需求,積極為學生設計針對性較強的練習活動。
輔助線在平行四邊形中的恰當運用
平行四邊形主要包括正方形、菱形,以及矩形,這些圖形的兩組對邊、對角等具有的性質都有一定的相似之處,所以,輔助線在這些圖形中的添加 方法 一般都具有較大的相似性,往往都是為了實現線段的垂直與平行,在此基礎上構成相應的全等、相似三角形。通常情況下,都是平移、連接圖形對角線,或者是結合實際情況連接其中一邊的中點與頂點等方式,從而將平行四邊形巧妙轉化成相應的矩形、三角形等圖形,這樣再分析解決其該題目則更加便捷。
例如,在解答下面這道題目時:已知AB與CD平行,BC平行於AD,證明,CD=AB。 在解答這道題目時,教師就可以通過添加輔助線AC來將圖形分割成兩個三角形進行證明。解答如下: 證明:連接AC。因為AB與CD平行,BC與AD平行,結合兩直線平行、內錯角相等的定理,所以∠1=∠2,∠3=∠4。在△ABC與△CDA中,因為∠1=∠2,∠4=∠3,CA=AC,所以根據角邊角定理可以得出△ABC≌三角形CDA,在結合全等三角形的對應邊相等定理可以得出AB=CD。通過指導學生將平行四邊形分割成兩個三角形,學生就可以輕松點運用三角形的相關知識來證明其對邊相等,讓其在此過程中掌握較為典型的輔助線添加方法,也更便捷的解答此題目。
2基本圖形的輔助線的畫法
三角形問題添加輔助線方法
方法1:有關三角形中線的題目,常將中線加倍.含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題. 方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題. 方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理.
平行四邊形中常用輔助線的添法
平行四邊形(包括矩形、正方形、菱形)輔助線通常是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法包括連對角線或平移對角線、過頂點作對邊的垂線構造直角三角形、連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線、過頂點作對角線的垂線,構成線段平行或三角形全等.
圓中常用輔助線的添法
在平面幾何中,解決與圓有關的問題時,常常需要添加輔助線的方法包括見弦作弦心距、見直徑作圓周角、見切線作半徑、兩圓相切作公切線、兩圓相交作公共弦等方法.
梯形中常用輔助線的添法
梯形是一種特殊的四邊形.它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決.輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內部平移一腰;(2)梯形外平移一腰;(3)梯形內平移兩腰;(4)延長兩腰;(5)過梯形上底的兩端點向下底作高;(6)平移對角線;(7)作中位線等.
3數學初中證明題技巧
讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置.?
要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論,然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習.?
要記.
這里的記有兩層意思.第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來.如給出對邊相等,就用邊相等的符號來表示;第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來.?
對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生.
4初中數學幾何證明題技巧
牢記幾何語言
幾何證明題,要使用幾何語言,這對於剛學幾何的學生來說,僅當又學一門「外語」,並努力盡快地掌握這門「外語」的語言使用和表達能力。
首先,從幾何第一課起,就應該特別注意幾何語言的規范性,要讓學生理解並掌握一些規范性的幾何語句。如:「延長線段AB到點C,使AC=2AB」,「過點C作CD⊥AB,垂足為點D」,「過點A作l∥CD」等,每一句通過上課的教學,課後的輔導,手把手的作圖,表達幾何語言;表達幾何語言後作圖,反復多次,讓學生理解每一句話,看得懂題意。
其次,要注意對幾何語言的理解,幾何語言表達要確切。例如:鈍角的意義是「大於直角而小於平角的叫鈍角」,「大於直角或小於平角的角叫鈍角」,把「而」字說成了「或」字,這就是學習對幾何語言理解不佳,造成的表達不確切。「一字之差」意思各異,在輔導時,注重語言的准確性,對其犯的錯誤反復更正,做到學習之初要嚴謹。
規范推理格式
數學中推理證明的書寫格式有許多種,但最基本的是演繹法,也就是從已知條件出發,根據已經學過的數學概念、公理、定理等知識,順著推理,由「已知」得「推知」,由「推知」得「未知」,逐步地推出求證的結論來。這種證題格式一般叫「演繹法」,課本上的定理證明,例題的證明,多數是採用這種格式。它的書寫形式表達常用語言是「因為…,所以…」特別是一開始學習幾何證明,首先要掌握好這種推理格式,做到規范化。
積累證明思路
「幾何證明難」最難莫過於沒有思路。怎樣積累證明思路呢?這主要靠聽講,看書時積極思考,不僅弄明白題目是「如何證明?」,還要進一步追究一下,「證明題方法是如何想出來的?」。只有經常這樣獨立思考,才會使自己的思路開闊靈活。隨著證明題難度的增加,還要教會學生用「兩頭湊」的方法,即在同一個證明題的分析過程中,分析法與綜合法並用,來縮短已知與未知之間的距離,在教學安排時,要給其足夠的時間思考,而且重復證明思路,提高對解題思路的理解和應用能力。
初中數學幾何做輔助線技巧相關 文章 :
1. 初中數學的解題技巧
2. 初二數學的重要性, 幾何常見輔助線口訣
3. 幾何大題的初中數學做題思路
4. 初二數學壓軸題答題技巧
5. 初中數學學習的一般誤區,數學學習十大技巧
6. 怎樣提高初二數學
7. 初中數學解題技巧與方法
8. 簡單高效的初中數學學習方法
9. 初中數學高效學習與解題方法
⑹ 八年級數學上冊幾何作輔助線的方法總結
常見輔助線的方法:(最常見的就是連接特殊兩點,作垂線和平行線(中位線)等)
1)
遇到等腰三角形,可作底邊上的高,利用「三線合一」的性質解題,思維模式是全等變換中的「對折」帆卜。
2)
遇到三角形的中點或中線,可作中位線或倍長中線,構造態或穗全等三角形,利用的思維模式是全等變換中的「旋轉」。必要時也可直接旋轉。
3)
遇到角平分線,可以在角平分線上一點像角的兩邊作垂線,利用的思維模式是三角形全等變換中的「對折」,所考知識點常常是角平分線的性質定理或逆定理。
4)
截長補短法,具體做法是在某條線段上截取一條線段與特定的線段相等,或是將某條線段延長,使之與特定線段相等,再利用三角形全等的相關性質加以說明。這種方法適合於證明線段的和,差,倍,分等類的題目。
5)
等面積法:利用三角形(或其他圖形)面積不同求法來解決線段之間的問題。
6)
遇到線段的垂直平分線,連接線段的垂直平分線上的點到線段兩端的距離相等。
7)
遇到直角三角形,作直角三角形斜邊上的中線。
8)
在有特殊角的情況下,考慮作等邊三角團簡形
⑺ 初二數學怎樣熟練掌握做輔助線的方法
初中數學輔助線
1.三角形問題添加輔助線方法
方法1:有關三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結論恰當的轉移,很容易地解決了問題。
方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質和題中的條件,構造出全等三角形,從而利用全等三角形的知識解決問題。
方法3:結論是兩線段相等的題目常畫輔助線構成全等三角形,或利用關於平分線段的一些定理。
方法4:結論是一條線段與另一條線段之和等於第三條線段這類題目,常採用截長法或補短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等於第一條線段,而另一部分等於第二條線段。
2.平行四邊形中常用輔助線的添法
平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質,所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:
(1)連對角線或平移對角線:
(2)過頂點作對邊的垂線構造直角三角形
(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線
(4)連接頂點與對邊上一點的線段或延長這條線段,構造三角形相似或等積三角形。
(5)過頂點作對角線的垂線,構成線段平行或三角形全等.
3.梯形中常用輔助線的添法
梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當的輔助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:
(1)在梯形內部平移一腰。
(2)梯形外平移一腰
(3)梯形內平移兩腰
(4)延長兩腰
(5)過梯形上底的兩端點向下底作高
(6)平移對角線
(7)連接梯形一頂點及一腰的中點。
(8)過一腰的中點作另一腰的平行線。
(9)作中位線
當然在梯形的有關證明和計算中,添加的輔助線並不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關鍵。
作輔助線的方法
一:中點、中位線,延線,平行線。
如遇條件中有中點,中線、中位線等,那麼過中點,延長中線或中位線作輔助線,使延長的某一段等於中線或中位線;另一種輔助線是過中點作已知邊或線段的平行線,以達到應用某個定理或造成全等的目的。
二:垂線、分角線,翻轉全等連。
如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,並藉助其他條件,而旋轉180度,得到全等形,,這時輔助線的做法就會應運而生。其對稱軸往往是垂線或角的平分線。
三:邊邊若相等,旋轉做實驗。
如遇條件中有多邊形的兩邊相等或兩角相等,有時邊角互相配合,然後把圖形旋轉一定的角度,就可以得到全等形,這時輔助線的做法仍會應運而生。其對稱中心,因題而異,有時沒有中心。故可分「有心」和「無心」旋轉兩種。
四:造角、平、相似,和、差、積、商見。
如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關。在製造兩個三角形相似時,一般地,有兩種方法:第一,造一個輔助角等於已知角;第二,是把三角形中的某一線段進行平移。故作歌訣:「造角、平、相似,和差積商見。」
五:面積找底高,多邊變三邊。
如遇求面積,(在條件和結論中出現線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關鍵。
如遇多邊形,想法割補成三角形;反之,亦成立。
另外,我國明清數學家用面積證明勾股定理,其輔助線的做法,即「割補」有二百多種,大多數為「面積找底高,多邊變三邊」。
初中幾何常見輔助線口訣
人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。
還要刻苦加鑽研,找出規律憑經驗。
三角形
圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。
線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
四邊形
平行四邊形出現,對稱中心等分點。梯形問題巧轉換,變為△和□。
平移腰,移對角,兩腰延長作出高。如果出現腰中點,細心連上中位線。
上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
請採納,你的採納是我上進的動力!可以追問,一直到懂!!!
⑻ 八年級數學輔助線做法技巧
八年級數學輔助線做法技巧如下:
圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以後關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。
平行四邊形出現,對稱中心等分點。平移腰,移對角,兩腰延長作出高。如果出現腰中點,細心連上中位線。上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習慣。等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代吵消換少麻煩。
平行四邊形(包括矩形、正方形、掘碰隱菱形)的兩組對邊、對角和對角線都具有某些相同性質,所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構成三角形的全等、相似,把平行四邊形問題轉化成常見的三角形、正方形等問題處理。
平行四邊形可以連對角線或平移對角線或過頂點作對邊的垂線構造直角三角形,或連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構造線段平行或中位線,或連接頂點與對邊上一點的線段或延長判廳這條線段,構造三角形相似或等積三角形。