Ⅰ 「數學」是的什麼東西
數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具
Ⅱ 什麼是數學
在數學創立的初期,數學的定義應該是數數的學問。不過數學發展到今日,已經遠遠不止是數數的學問,那麼究竟什麼是數學呢?
數學是研究數量、結構、變化及空間模型等概擾悶念的一門學問。通過邏輯豎李游推理和抽象化的使用,由計算、計數、度量和對物體形態及運動的觀察中產生。數學家們為了拓展這些概念,為了公式化新的余銷猜想,以及從公理、定理中建立起嚴謹推導的真理。
本篇文章來源於數聯天地(
http://www.math15.com
)
原文鏈接:
http://www.math15.com/mathbase/1.html
Ⅲ 數學是一個什麼樣的東西
數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
1:數學史
2:數理邏輯與數學基礎
X軸Y軸
a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
7:拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
8:數學分析
a:微分學 b:積分學 c:級數論 d:數學分析其他學科
9:非標准分析
10:函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
11:常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
12:偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
13:動力系統
a:微分動力系統 b:拓撲動力系統 c:復動力系統 d:動力系統其他學科
14:積分方程
15:泛函分析
a:線性運算元理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:運算元代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
16:計算數學
a:插值法與逼近論 b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
17:概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
18:數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
19:應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
20:應用統計數學其他學科
21:運籌學
a:線性規劃 b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
22:組合數學
23:模糊數學
24:量子數學
25:應用數學 (具體應用入有關學科)
26:數學其他學科
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意.古希臘學者視其為哲學之起點,「學問的基礎」.另外,還有個較狹隘且技術性的意義——「數學研究」.即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的.
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學).
就縱度而言,在數學各自領域上的探索亦越發深入.
圖中數字為國家二級學科編號.
結構
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統.把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅理論解決了,它涉及到域論和群論.代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.
空間
空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學.數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色.在微分幾何中有著纖維叢及流形上的計算等概念.在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間.李群被用來研究空間、結構及變化.
基礎
旋轉曲面(8張)
主條目:數學基礎
為了弄清楚數學基礎,數學邏輯和集合論等領域被發展了出來.德國數學家康托爾(1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的思想,為以後的數學發展作出了不可估量的貢獻.
集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具.20世紀初,數學家希爾伯特在德國傳播了康托爾的思想,把集合論稱為「數學家的樂園」和「數學思想最驚人的產物」.英國哲學家羅素把康托的工作譽為「這個時代所能誇耀的最巨大的工作」
邏輯
主條目:數理邏輯
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性.
符號
編輯
主條目:數學符號
也許我國古代的算籌是世界上最早使用的符號之一,起源於商代的占卜.
我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的.在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序.現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步.它被極度的壓縮:少量的符號包含著大量的訊息.如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼.
嚴謹性
數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思.數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」.
嚴謹是數學證明中很重要且基本的一部分.數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子.在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹.牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理.今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹.
數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的有理和無理數.
另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較.
簡史
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了.
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統.
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展.
中國數學簡史
主條目:中國數學史
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合.
相關
編輯
中國古代算術的許多研究成果裡面就早已孕育了後來西方數學才涉及的思想方法,近現代也有不少世界領先的數學研究成果就是以華人數學家命名的:
【李善蘭恆等式】數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式).
【華氏定理】數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」.
【蘇氏錐面】數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」.
【熊氏無窮級】數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」.
【陳示性類】數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」.
【周氏坐標】數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」.
【吳氏方法】數學家吳文俊關於幾何定理機器證明的方法被國際上譽為「吳氏方法」;另外還有以他命名的「吳氏公式」.
【王氏悖論】數學家王浩關於數理邏輯的一個命題被國際上定為「王氏悖論」.
【柯氏定理】數學家柯召關於卡特蘭問題的研究成果被國際數學界稱為「柯氏定理」;另外他與數學家孫琦在數論方面的研究成果被國際上稱為「柯—孫猜測」.
【陳氏定理】數學家陳景潤在哥德巴赫猜想研究中提出的命題被國際數學界譽為「陳氏定理」.
【楊—張定理】數學家楊樂和張廣厚在函數論方面的研究成果被國際上稱為「楊—張定理」.
【陸氏猜想】數學家陸啟鏗關於常曲率流形的研究成果被國際上稱為「陸氏猜想」.
【夏氏不等式】數學家夏道行在泛函積分和不變測度論方面的研究成果被國際數學界稱為「夏氏不等式」.
【姜氏空間】數學家姜伯駒關於尼爾森數計算的研究成果被國際上命名為「姜氏空間」;另外還有以他命名的「姜氏子群」.
【侯氏定理】數學家侯振挺關於馬爾可夫過程的研究成果被國際上命名為「侯氏定理」.
【周氏猜測】數學家周海中關於梅森素數分布的研究成果被國際上命名為「周氏猜測」.
【王氏定理】數學家王戌堂關於點集拓撲學的研究成果被國際數學界譽為「王氏定理」.
【袁氏引理】數學家袁亞湘在非線性規劃方面的研究成果被國際上命名為「袁氏引理」.
【景氏運算元】數學家景乃桓在對稱函數方面的研究成果被國際上命名為「景氏運算元」.
【陳氏文法】數學家陳永川在組合數學方面的研究成果被國際上命名為「陳氏文法」.
數學名言
外國人物
萬物皆數.——畢達哥拉斯
幾何無王者之道.——歐幾里德
數學是上帝用來書寫宇宙的文字.——伽利略[2]
我決心放棄那個僅僅是抽象的幾何.這就是說,不再去考慮那些僅僅是用來練思想的問題.我這樣做,是為了研究另一種幾何,即目的在於解釋自然現象的幾何.——笛卡兒(Rene Descartes 1596-1650)
數學家們都試圖在這一天發現素數序列的一些秩序,我們有理由相信這是一個謎,人類的心靈永遠無法滲入。——歐拉
數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.數學是科學之王.——高斯
這就是結構好的語言的好處,它簡化的記法常常是深奧理論的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
如果認為只有在幾何證明裡或者在感覺的證據里才有必然,那會是一個嚴重的錯誤.——柯西(Augustin Louis Cauchy 1789-1857)
數學的本質在於它的自由.——康托爾(Georg Ferdinand Ludwig Philipp Cantor 1845-1918)
音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科學可改善物質生活,但數學能給予以上的一切.——克萊因(Christian Felix Klein 1849-1925)
只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示獨立發展的終止或衰亡. ——希爾伯特(David Hilbert 1862-1943)
問題是數學的心臟.——保羅·哈爾莫斯(Paul Halmos 1916-2006)
時間是個常數,但對勤奮者來說,是個『變數』.用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍.——雷巴柯夫
Ⅳ 數學到底是什麼
學了那麼多年數學,但是問你什麼是數學,你能回答得出來嗎?
我估計絕大多數人都回答不了這個問題,這其實也印證了一個哲學觀點——越簡單的問題越難回答。
數學本身是一個歷史的概念,數學的內涵是隨著時代的變化而變化的,所以要想給數學下定義就得從歷史的角度來談談「什麼是數學」這個問題。
現在我按照從古到今的順序羅列出人們對數學的定義:
1. 數學是量的科學
2. 數學是研究現實世界的空間形式與數量關系的科學
3. 現代數學就是各種量之間的可能的,一般說是各種變化著的量的關系和相互聯系的數學
4. 【數學】這個領域已被稱作模式的科學,其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性
這里羅列出的是最具影響力的一些定義,大多數人都將數學的定義在第2點上面,但是當今數學界大多數數學家們更認同與接受最後一個定義,因為它具有高度的概括性。
「任何學科都有其基本結構,任何與該學科有聯系的事實、論據、觀念、概念等都可以不斷地納入一個處於不斷統一的結構之內。」這是教育學家布魯納的「學科基本結構理論」。打個比方:假如學科是一股泉水,那麼它的基本結構就是泉源,泉水都是來源於泉源的,只有找到源頭,我們才能真正了解這股泉水。那麼對於數學來說,它的「泉源」是什麼呢?
要找數學的「源頭」那就得知道歐幾里得的《原本》,這是被人們稱作「數學的聖經」的書,是當時整個希臘數學成果、方法、思想和精神的結晶,其內容和形式對幾何學本身和數學邏輯的發展有著巨大的影響。
歐幾里得在這本原著中用公理法對當時的數學知識作了系統化、理論化的總結。全書共分13卷,包括5條公理、5條公設、119個定義和465條命題,構成了歷史上第一個數學公理體系。
《原本》中的最基本的定義有:
1. 點是沒有部分的
2. 線是沒有寬度的長
3. 面是只有長度和寬度的
4. 圓是由一條曲線包圍的平面圖形,從其內一點出發落在曲線上,所有線段彼此相等
……
《原本》中的5條公設:
1. 假定從任意一點到任意一點可作一條直線
2. 一條有限直線可不斷延長
3. 以任意中心和直徑可以畫圓
4. 凡直角都彼此相等
5. 若一直線落在兩直線上所構成的同旁內角和小於兩直角,那麼把兩直線無限延長,它們將在同旁內角和小於兩直角的一側相交
《原本》中的5條公理:
1. 等於同量的量彼此相等
2. 等量加等量,和相等
3. 等量減等量,差相等
4. 彼此重合的圖形是全等的
5. 整體大於部分
這里解釋一下公理和公設的區別:公理是在任何數學學科里都適用的不需要證明的基本原理。公設則是幾何學里的不需要證明的基本原理,就是現代幾何學里的公理。
歐幾里得以這些基本定義、公設和公理作為全書推理的出發點,這成為了數學最基本的出發點,也就是我們說的數學的「源頭」,這也正是數學的魅力所在!
Ⅳ 你認為數學是什麼
數學是一種樂趣,一種智橋虧慧,也是一種必不可少。
數學從古至今貫穿始終。從原始人採用貝殼計數,刻骨劃痕;到古人的圓周率的發現以及不斷精確,阿基米德定律,不定方程;再到近代的微分方程, 坐標系,微積分,概率論;最後到現在的 集合論,數學分析,公理化體系,組合數學等。隨時隨地都體現了數學。
從古自今數學大致可以分為四個時期:
在這四個時期內,數學不斷發展完善並為人類做出貢獻。從古代房屋的建設,大壩的修建,到現在鄭培的高樓大廈,水利工程等,都充滿著數學。
而我們在不同的年紀,敏叢神對數學也會有這不一樣的認知。
在小學時,我們可能覺得數學就是加減乘除,再加上一些簡單的方程;到了初中,我們可能覺得數學是更加復雜的方程,以及一些簡單的幾何問題;到了高中,我們可能會遇到函數題,不等式等;到了大學,我因為每個人專業不同而接觸不同方面的數學。
總而言之,數學究竟是什麼對沒有具體言論去概括,而是要我們每個人去不斷發現認知的過程。
Ⅵ 數學是什麼什麼是數學
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受。
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。
算術(加減乘除)也自然而然地產生了。更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發。
Ⅶ 什麼是數學數學在現實生活中的作用有什麼
引言:說起數學這個名詞,很多人都會想到數學這門學科。確實從小學到大學甚至學到更高的層次都離不開數學,那麼到底什麼是數學呢?數學在現實生活中究竟有哪些作用呢?
三、生活中的數學說起生活中的數學普遍一些的,就是加減乘除這些基本的計算了,因為這些數字都是跟錢有關的。但是實際上數學中最廣泛的應用還是在各種學科的基礎理論支撐,比如說財經中就需要運用到數學來進行計算以及報表的分析。而物理學科也是需要數學的。尤其是計算機,其實計算機的基礎就是通過各種數字的排列來表達信息的。同時數學在各種機密計算以及航天事業中的作用也是不容小覷的。
Ⅷ 數學到底是啥意思
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推知輪理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家仿猛罩們拓展這些備鬧概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
Ⅸ 什麼是數學!
數學是科學和我們日常生活的核心
數學是處理形狀、數量和排列邏輯的科學。數學就在我們身邊,在我們所做的一切中。它是我們日常生活中一切事物的基石,包括移動設備、計算機、軟體、建築(古代和現代)、藝術、貨幣、工程甚至體育。
自從有歷史記錄以來,數學的發現一直處於每個文明社會的前沿,甚至最原始和最早的文化都在使用數學。數學家雷蒙德-L-懷爾德(Raymond L. Wilder)在他的《數學概念的演變》(Dover Publications,2013年)一書中概述了對數學的需求,因為世界各地的社會要求越來越復雜,需要更先進的數學解決方案。
一個社會越復雜,數學需求就越復雜。原始部落需要的不過是計數的能力,但也用數學來計算太陽的位置和狩獵的物理學。"所有的記錄,包括人類學和歷史記錄都表明,計數以及最終作為計數工具的數字系統構成了所有文化中數學元素的開端,"懷爾德在1968年寫道。
這些抽象的問題和技術性問題是純數學試圖解決的,這些嘗試為人類帶來了重大發現,包括阿蘭-圖靈在1937年提出的通用圖靈機理論。這台機器開始是一個抽象的想法,後來為現代計算機的發展奠定了基礎。純粹數學是抽象的,基於理論的,因此不受物理世界的限制。
根據格瑞利(Goriely)的說法,"應用數學對於純數學來說,就像流行音樂對於古典音樂一樣"。純粹和應用並不相互排斥,但它們根植於數學和問題解決的不同領域。盡管純數學和應用數學所涉及的復雜數學超出了大多數人的理解范圍,但從這些過程中開發出來的解決方案影響並改善了許多人的生活。