導航:首頁 > 數字科學 > 高中數學套路如何歸納

高中數學套路如何歸納

發布時間:2023-04-18 10:02:36

Ⅰ 學好高中數學的32個技巧

初升高數學其實是有本質變化的,高中數學學習節奏快,難度大,並且基礎知識和題目是分節的,題目都是比較隱晦的,並沒有告訴你這個題目考察什麼,並且題目一般不單單考察一個知識點,會考察很多的內容的呢,所以要學好高中數學一定要在做好以下幾點哦。

首先,還是要學會基礎知識,學會並不是說聽懂了,老師說的都是中文大家聽了應該都能知道說的是啥,但是老師說的這個基礎知識是首先要知道如何得到的基礎知識,也就是跟聽故事似得,要知道數學公式的來歷,數學的應用,數學的歷史,要知道故事的開鋒鬧頭才會吸引你們的興趣讀下去的呢。

第二,學會了基礎知識,不一定會做題,所以題目和基礎知識有種微妙的關系,就像暗戀一樣那種不容易發現出來的呢,所以這時候需要大家聽老師的講解例題,自己看一些例題的標准答案,不是讓你抄答案,畢竟現在這么多搜答案的地方呢,是讓你總結規律,總結題目中的語言與做題的套路的之間的關系,總結做題的方法。這些方法可以找本帶答案的書自己總結,也可以找個靠譜的老師去補習哦。

第三,學會了就要去做練習,正所謂空手套白狼這一套在高中數學沒啥用的哦,所以大家一定要保證充足的練習量,不是一者山直刷題,而是要邊刷題邊總結規律,邊總結規律再去刷題,這樣的話才能鞏固咱們的做題方法哦~

第四,總結,總結方法銀嫌罩和做題套路,總結自己容易錯的點,好記性不如爛筆頭,你隨手錯的內容特別容易被忽略的呢,所以這時候需要總結在錯題本上的呢,而且也是很重要的內容哦。

第五,復習,孩子,人的腦子都是有記憶的容量的,所以大家都不是過目不忘的,復習是復習基礎知識,復習做題方法。按照記憶規律的話,大家學習的當天晚上是需要復習的,三天左右基本上也是要復習的呢,然後一星期復習,所以你說你每天學那麼多內容,學那麼多學科的內容,沒有錯題本,還是會崩潰的吧,所以提問的哥們啊,一定要記錄在錯題本上,而且要及時復習哦。

Ⅱ 2021高考數學知識點歸納總結:數學公式大全高中必背(完整版)

高中數學是一門比較佔分的科目,有繁多的公式和數值,讓很多的同學感到頭疼。下面我為大家整理的《高中數學知識點歸納總結及高中數學公式大全(完整版)》,僅供大家參考。


1.集合與函數

內容子交並補集,還有冪指對函數。
性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,
若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。
底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,
偶次方根須非負,零和負數無對數;
正切函數角不直,餘切函數角不平;
其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;
圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;
反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;
函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;
圖象第一象限內,函數增減看正負。

2.三角函數

三角函數是函數,象限符號坐標注。
函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。
正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;
向下三角平方和,倒數關系是對角,
變成稅角好查表,化簡證明少不了。
二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。
兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。
和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函數名,
保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。
條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。
公式順用和逆用,變形運用加巧用;
1加餘弦想餘弦,1減餘弦想正弦,
冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,
先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,
簡單三角的方程,化為最簡求解集;

3.不等式

解不等式的途徑,利用函數的性質。
對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。
數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。
求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。
非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。
圖形函數來幫助,畫圖建模構造法。

4.數列

等差等比兩數列,通項公式N項和。
兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。
數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。
歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。
還有數學歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,
推論過程須詳盡,歸納原理來肯定。

5.復數

虛數單位i一出,數集擴大到復數。
一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。
箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。
代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。
i的正整數次慕毀枯,四個數值周期現。
一些重要的結論,熟記巧用得結果。
虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。
幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,
逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。
利用棣莫弗公式,乘方開方極方便。
輻纖睜洞角運算很奇特,和差是由積商得。
四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。
復數實數很密切,須注意本質區別。

6.排列、組合、二項式定理

加法乘法兩原理,貫穿始終的法則。
與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。
歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。
特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁早伍插空是技巧。
排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。
兩條性質兩公式,函數賦值變換式。

7.立體幾何

點線面三位一體,柱錐檯球為代表。
距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。
線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。
計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。
射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。
公理性質三垂線,解決問題一大片。

8.平面解析幾何

有向線段直線圓,橢圓雙曲拋物線,
參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,
兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;
都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,
給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;
平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。
圖形直觀數入微,數學本是數形學

Ⅲ 高中數學歸納法要點!!急!!

數學歸納法原理:

第一數學歸納法:⑴證明當n取第一個值n0時,命題成立。
⑵假設當n=k(k≥n0,k∈N)時,命題成立,再證明當n=k+1時命題也絕拿成立。
則命題對於從n0開始的所有自然數n都成立。
第二數學歸納法:⑴證明當n=n0,n=n0+1時,命題成立。
⑵假設當n=k-1,n=k(k≥n0,k∈N)時,命題成立,再證明當n=k+1時命題也掘宏芹成立。
則命題對於從n0開始的所有自然數n都成立。
第三數學歸納法:⑴證明當n取第一個值n0時,命題成立。
⑵假設當n≤k(k≥n0,k∈N)時,命題成立,再證明當n=k+1時命題也成立。
則命題對於從n0開始的所有自然數n都成立。
例題:
證:an+bn能被a+b整除 (n(N,n為奇數)。
證:①當n=1時,顯然。
②設n=k時,結論對。則當n=k+2時,
∵ak(2+bk(2=ak(2+a2bk-a2bk+bk(2=a2(ak+bk)-bk(a-b) (a+b),由歸納假設知能被a+b整除。
由①、②知對一切奇判畢數n,an+bn能被a+b整除。

Ⅳ 高中數學知識點全總結

高中數學知識點全總結 : 1、數列或者三角函數;2、立體幾何;3、概率統計;4、圓錐曲線;5、導數;6、選修題(參數方程和不等式)。

1、三角函數

對於三角函數的考法共有兩種。分別是解三角形和三角函數本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對於三角函數本身的熟練運用。

2、概率統計

以理科數學為例,考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特徵、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變數的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法。

3、立體幾何

這道題有兩到三問,前面問的某條線的大小或者證明某個線或面與另外一個線或面平行或垂直,最後一問是求二面角。

4、數列

數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法並積累例題達到熟練的程度。

5、圓錐曲線

一般套路就是,前半部分是對基本性質的考察,後半部分考察與直線相交,且後半部分的步驟幾乎都是一致的。

Ⅳ 高中數學快速解題方法與技巧有哪些

在高中數學的學習和考試過程中,掌握一些學習解題技巧,不僅有助於快速解題,還能提高正確率。下面是我分享的高中數學快速解題方法與技巧,一起來看看吧。

高中數學快速解題方法與技巧
審題要認真仔細

審題的第一步是讀題,這是獲取資訊量和思考的過程。讀題要細,應特別注意每一句話的內在涵義,並從中找出隱含條件。

有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些資訊,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。

論證演算的方法

這又可以依其適應面分為兩個層次:第一層次是適應面較寬的求解方法,如消元法、換元法、降次法、待定系數法、反證法、同一法、數學歸納法即遞推法、座標法、三角法、數形結合法、構造法、配方法等等;

第二層次是適應面較窄的求解技巧,如因式分解法以及因式分解里的「裂項法」、函式作圖的「描點法」、以及三角函式作圖的「五點法」、幾何證明裡的「截長補短法」、「補形法」、數列求和里的「裂項相消法」等。

限時答題,先提速後糾正錯誤

很多同學做題慢的一個重要原因就是平時做作業習慣了拖延時間,導致形成了一個不太好的解題習慣。所以,提高解題速度就要先解決「拖延症」。比較有效的方式是限時答題,例如在做數學作業時,給自己限時,先不管正確率,首先保證在規定時間內完成數學作業,然後再去糾正錯誤。這個過程對提高書寫速度和思考效率都有較好的作用。當你習慣了一個較快的思考和書寫後,解題速度自然就會提高,及改正了拖延的毛病,也提高了成績。

學會畫圖

畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。

因此,牢記各種題型的基本作圖方法,牢記各種函式的影象和意義及演變過程和條件,對於提高解題速度非常重要。
高中數學的解題套路和技巧
1.思路思想提煉法

催生解題靈感。「沒有解題思想,就沒有解題靈感」。但「解題思想」對很多學生來說是既熟悉又陌生的。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什麼。建議同學們在老師的指導下,多做典型的數學題目,則可以快速掌握。

2.典型題型精熟法

抓准重點考點管理學的「二八法則」說:20%的重要工作產生80%的效果,而80%的瑣碎工作只產生20%的效果。數學學習上也有同樣現象:20%的題目重點、考點集中的題目對於考試成績起到了80%的貢獻。因此,提高數學成績,必須優先抓住那20%的題目。針對許多學生「題目解答多,研究得不透」的現象,應當通過科學用腦,達到每個章節的典型題型都胸有成竹時,解題時就會得心應手。

3.逐步深入糾錯法

鞏固薄弱環節管理學上的「木桶理論」說:一隻水桶盛水多少由最短板決定,而不是由最長板決定。學數學也是這樣,數學考試成績往往會因為某些薄弱環節大受影響。因此,鞏固某個薄弱環節,比做對一百道題更重要。
高考數學解題時的注意事項
1.精選題目,避免題海戰術

只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。

2.認真分析題目

解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯絡的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。

3.做好題目總結

解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:

1在知識方面。題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。

2在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。

3能否歸納出題目的型別,進而掌握這類題目的解題方法。

Ⅵ 高中數學知識點大全

有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!

高中數學知識點

1、基本初等函數

指數、對數、冪函數三大函數的運算性質及圖像

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對於冪函數還要搞清楚當指數冪大於一和小於一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

2、函數的應用

這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的 方法 ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。

3、空間幾何

三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。

4、點、直線、平面之間的位置關系

這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。

關於這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎麼在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。

5、圓與方程

能熟練地把一般式方程轉化為標准方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

6、三角函數

考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

7、平面向量

向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要「同起點的向量」這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。

8、三角恆等變換

這一章公式特別多,像差倍半形公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函數去記。

9、解三角形

掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。

10、數列

等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。

11、不等式

這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。



高中數學公式大全

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1_X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c_h 斜稜柱側面積 S=c'_h

正棱錐側面積 S=1/2c_h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2

圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l

弧長公式 l=a_r a是圓心角的弧度數r >0 扇形面積公式 s=1/2_l_r

錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s_h 圓柱體 V=pi_r2h

高考前數學知識點 總結

選擇填空題

1、易錯點歸納:

九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

2、答題方法:

選擇題十大速解方法:

排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

解答題

專題一、三角變換與三角函數的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

專題二、解三角形問題

1、解題路線圖

(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。

(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。

②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。

專題三、數列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數列的關系式。

②求通項公式。

③求數列和通式。

2、構建答題模板

①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,並用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特徵點坐標。

③求向量:求直線的方向向量或平面的'法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數:用一個變數表示目標變數,代入不等關系式。

③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。

④再回顧:注意目標變數的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

專題七、離散型隨機變數的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

2、構建答題模板

①定元:根據已知條件確定離散型隨機變數的取值。

②定性:明確每個隨機變數取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變數取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據均值、方差公式求解其值。

專題八、函數的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

2、構建答題模板

①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的「套路」。

高中數學 學習心得

數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由於高中數學對知識的難度、深度、廣度要求更高,有一部分同學由於不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:「我在初中時數學成績很好,可現在怎麼了?」其實,學習是一個不斷接收新知識的過程。正是由於你在進入高中後 學習方法 或 學習態度 的影響,才會造成學得累死而成績不好的後果。那麼,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。

一、 認清學習的能力狀態。

1、 心理素質。我們在高中學習環境下取決於我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇於正視自己,及時作出總結教訓,改變學習方法。

2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以後,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙於記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙於記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙於套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些「自我感覺良好」的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重於對難題的攻解,好高騖遠,重「量」而輕「質」,陷入題海,往往在考試中不是演算錯誤就是中途「卡殼」。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴於老師解說的心理,做作業不講究效率,學習效率不高。

二、 努力提高自己的學習能力。

1、 抓要點提高學習效率。(1) 抓教材處理。正所謂「萬變不離其中」。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,並將前後知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對於那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鍾課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望於課外去補,則會使學習效率大打折扣。

高中數學知識點大全相關 文章 :

★ 高二數學知識點總結

★ 高一數學必修一知識點匯總

★ 高中數學學習方法:知識點總結最全版

★ 高中數學知識點總結

★ 高一數學知識點總結歸納

★ 高三數學知識點考點總結大全

★ 高中數學基礎知識大全

★ 高三數學知識點梳理匯總

★ 高中數學必考知識點歸納整理

★ 高一數學知識點總結期末必備

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅶ 高中數學必考知識點歸納大全

總結 是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,下面是我給大家帶來的數學必考知識點歸納大全,以供大家參考!

高中數學必考知識點歸納大全

1、 高一數學 知識點總結:集合一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的 籃球 隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示 方法 :列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大

括弧內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關系

1.「包含」關系—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.「相等」關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}「元素相同則兩集合相等」即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那麼A?C

④如果A?B同時B?A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標准。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧「{}」內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:「能被2整除,且大於0」

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學必修一知識點摘要

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線

高一數學知識點小結

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定系數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與 其它 知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的 熱點 考題,往往以大題形式出現.


高中數學必考知識點歸納大全相關 文章 :

★ 高中數學必考知識點歸納整理

★ 高中數學必考知識點歸納

★ 高中數學知識點全總結最全版

★ 高一數學有用必考知識點歸納

★ 高考數學必考知識點考點2020大全總結

★ 高中數學知識點大全

★ 高中數學全部知識點提綱整理

★ 高中數學考點整理歸納

★ 高中數學知識點總結及公式大全

★ 高中數學知識點全總結

Ⅷ 高中數學知識點總結歸納

如果把數學比作一把鎖的話,那思考就是一把開鎖的金鑰匙,為你打開這數學之鎖。下面就是我為大家精心整理的高中數學知識點 總結 ,希望對你們有所幫助!

高中數學知識點總結歸納

1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。

2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等於補之並。

Cu(AUB)=(CuA)∩(CuB),者漏並之補等於補之交。

3、ax2+bx+c<0的解集為x(0

+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+

4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。

5、原命題與其逆否命題是等價命題。

原命題的逆命題與原命題的否命題也是等價命題。

6、函數是一種特殊的映射,函數與映射都可用:f:A→B表示。

A表示原像,B表示像。當f:A→B表示函數時,A表示定義域,B大於或等於其值域范圍。只有一一映射的函數才具有反函數。

7、原悶嫌畢函數與反函數的單調性一致,且都為奇函數。

偶函數和周期函數沒有反函數。若f(x)與g(x)關於點(a,b)對稱,則g(x)=2b-f(2a-x).

8、若f(-x)=f(x),則f(x)為偶函數,若f(-x)=f(x),則f(x)為奇函數;

偶函數關於y軸對稱,且對稱軸兩邊的單調性相反;奇函數關於原點對稱,且在整個定義域上的單調性一致。反之亦然。若奇函數在x=0處有意義,則f(0)=0。函數的單調性可用定義法和導數法求出。偶函數的導函數是奇函數,奇函數的導函數是偶函數。對於任意常數T(T≠0),在定義域范圍內,都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數,且f(x+kT)=f(x),k≠0.

9、周期函數的特徵性:①f(x+a)=-f(x),是T=2a的函數,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數,③若f(x)既x=a關對稱,又關於x=b對稱,則f(x)是T=2(b-a)的函數④若f(x

+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數⑤f(x+a)=±,則f(x)

是T=4(b-a)的函數

10、復合函數的單調性滿足「同增異減」原理。

定義域都是指函數中自變數的取值范圍。

11、抽象函數主要有f(xy)=f(x)+f(y)(對數型),f(x+y)=f(x)?f(y)(指數型),f(x+y)=f(x)+f(y)(直線型)。

解此類抽象函數比較實用的 方法 是特殊值法和周期法。

12、指數函數圖像的規律是:底數按逆時針增大。

對數函數與之相反.

13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。

在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數方程或不等式時,常藉助於換元法,應特別注意換元後新變元的取值范圍。

14、log10N=lgN;logeN=lnN(e=2.718???);對數的性質:如果a>0,a≠0,M>0N>0,

那麼loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.

換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.

15、函數圖像的變換:

(1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;

(2)豎直平移:y=f(x)±b(b>0)圖像螞芹,可由y=f(x)向上或向下平移b個單位得到;

(3)對稱:若對於定義域內的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關於直線x=m對稱;y=f(x)關於(a,b)對稱的函數為y!=2b—f(2a—x).

(4) , 學習計劃 ;翻折:①y=|f(x)|是將y=f(x)位於x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位於y軸左方的圖像翻折到y軸的右方而成的圖像。

(5)有關結論:①若f(a+x)=f(b—x),在x為一切實數上成立,則y=f(x)的圖像關於

x=對稱。②函數y=f(a+x)與函數y=f(b—x)的圖像有關於直線x=對稱。

15、等差數列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+

16、若n+m=p+q,則am+an=ap+aq;

sk,s2k—k,s3k—2k成以k2d為公差的等差數列。an是等差數列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數列,則可設前n項和為sn=an2+bn(註:沒有常數項),用方程的思想求解a,b。在等差數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等差數列。

17、等比數列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),

sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;

sk,s2k—k,s3k—2k也是等比數列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數列。在等比數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等比數列。裂項公式:

=—,=?(—),常用數列遞推形式:疊加,疊乘,

18、弧長公式:l=|α|?r。

s扇=?lr=?|α|r2=?;當一個扇形的周長一定時(為L時),

其面積為,其圓心角為2弧度。

19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;

Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ

高考數學必考知識點

1.【數列】&【解三角形】

數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來, 2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。

數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。

解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。

2.【立體幾何】

高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。

3.【概率】

高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。

4.【解析幾何】

高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。

5.【導數】

高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。

6.【選做題】

今年高考幾何證明選講已經刪除,選考題只剩兩道,一道是坐標系與參數方程問題,另一道是不等式選講問題。坐標系與參數方程題主要考查曲線的極坐標方程、參數方程、直線參數方程的幾何意義的應用以及范圍的最值問題;不等式選講題主要考查絕對值不等式的化簡,求參數的范圍及不等式的證明。

高中數學知識點總結

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.

二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.

八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.

九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.

十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發生的概率;4.相互獨立事件同時發生的概率;5.獨立重復試驗.選修Ⅱ(24個)

十二、概率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態分布;6.線性回歸.

十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.

十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函數的導數;4.兩個函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的值和最小值.

十五、復數(4課時,4個)1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數x的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函數迭代,求n次迭代,簡單的函數方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

高中數學知識點總結歸納最新相關 文章 :

★ 高中數學知識點全總結最全版

★ 高中數學知識點最新歸納

★ 高考數學知識點總結最新整理

★ 高中數學考點整理歸納

★ 高中數學知識點全總結

★ 高中數學學習方法:知識點總結最全版

★ 高中高一數學知識點總結

★ 高中數學全部知識點提綱整理

★ 最新高考數學知識點歸納總結

★ 高考數學知識點最新總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
閱讀全文

與高中數學套路如何歸納相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1259
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1349
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:826
武大的分析化學怎麼樣 瀏覽:1212
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016