導航:首頁 > 數字科學 > 初中數學幾何模型有哪些

初中數學幾何模型有哪些

發布時間:2023-04-27 12:52:32

初中數學模型有哪些

新課標
初中數學建模的常見類型
全日制義務教育數學課程標准對數學建模提出了明確要求,標准強調「從學生以有的經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解析與應用的過程,進而使學生獲得對數學理解的同時,在思維能力。情感態度與價值觀等方面得到進步和發展。」強化數學建模的能力,不僅能使學生更好地掌握數學基礎知識,學會數學的基本思想和方法。也能增強學生應用數學的意識,提高分析問題,解決實際問題的能力。2007年全國各地的中考試題考查學生建模思想和意識的題目有許多,現分類舉例說明。
一、建立「方程(組)」模型
現實生活中廣泛存在著數量之間的相等關系,「方程(組)」模型是研究現實世界數量關系的最基本的數學模型,它可以幫助人們從數量關系的角度更正確、清晰的認識、描述和把握現實世界。諸如納稅問題、分期付款、打折銷售、增長率、儲蓄利息、工程問題、行程問題、濃度配比等問題,常可以抽象成「方程(組)」模型,通過列方程(組)加以解決
例1(2007年深圳市中考試題)A、B兩地相距18公里,甲工程隊要在A、B兩地間鋪設一條輸送天然氣管道,乙工程隊要在A、B兩地間鋪設一條輸油管道。已知甲工程隊每周比乙工程隊少鋪設1公里,甲工程對提前3周開工,結果兩隊同時完成任務,求甲、乙兩工程隊每周各鋪設多少公里管道?
解:設甲工程隊每周鋪設管道x公里,則乙工程隊每周鋪設管道(x+1)公里。
依題意得:
解得x1=2, x2=-3
經檢驗x1=2,x2=-3都是原方程的根。
但x2=-3不符合題意,捨去。
∴x+1=3
答:甲工程隊每周鋪設管道2公里,則乙工程隊每周鋪設管道3公里。
二、建立「不等式(組)」模型
現實生活建立中同樣也廣泛存在著數量之間的不等關系。諸如統籌安排、市場營銷、生產決策、核定價格範圍等問題,可以通過給出的一些數據進行分析,將實際問題轉化成相應的不等式問題,利用不等式的有關性質加以解決。
例2 (2007年茂名市中考試題)某體育用品商場采購員要到廠家批發購進籃球和排球共100隻,付款總額不得超過11815元。已知兩種球廠家的批發價和商場的零售價如下表,試解答下列問題:
品名 廠家批發價(元/只) 商場零價(元/只)
籃球 130 160
排球 100 120
(1)該采購員最多可購進籃球多少只?
(2)若該商場能把這100隻球全部以零售價售出,為使商場獲得的利潤不低於2580元,則采購員至少要購籃球多少只?該商場最多可盈利多少元?
解:(1)該采購員最多可購進籃球x只,則排球為(100-x)只,
依題意得:130x+100(100-x)≤11815
解得x≤60.5
∵x是正整數,∴x=60
答:購進籃球和排球共100隻時,該采購員最多可購進籃球60隻。
(2)該采購員至少要購進籃球x只,則排球為(100-x)只,
依題意得:30x+20(100-x)≥2580
解得x≥58
由表中可知籃球的利潤大於排球的利潤,因此這100隻球中,當籃球最多時,商場可盈利最多,即籃球60隻,此時排球平均每天銷售40隻,
商場可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)
答:采購員至少要購進籃球58隻,該商場最多可盈利2600元。
三、建立「函數」模型
函數反映了事物間的廣泛聯系,揭示了現實世界眾多的數量關系及運動規律。現實生活中,諸如最大獲利、用料價造、最佳投資、最小成本、方案最優化問題,常可建立函數模型求解。
例3 (2007年貴州貴陽市中考試題)某水果批發商銷售每箱進價為40元的蘋果,物價部門規定每箱售價不得高於55元,市場調查發現,若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱。
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數關系式。
(2)求該批發商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數關系式。
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
解:(1)y=90-3(x-50) 化簡,得y=-3x+240
(2)w=(x-40)(-3x+240)
=-3x2+360x-9600
(3)w=-3x2+360x-9600
= -3(x-60)2+1125
∵a=-3<0∴拋物線開口向下
當x=60時,w有最大值,又x<60,w隨x的增大而增大,
∴當x=55時,w的最大值為1125元,
∴當每箱蘋果的銷售價為55元時,可以獲得最大利潤1125元的最大利潤
四、建立「幾何」模型
幾何與人類生活和實際密切相關,諸如測量、航海、建築、工程定位、道路拱橋設計等涉及一定圖形的性質時,常需建立「幾何模型,把實際問題轉化為幾何問題加以解決
例4 (2007年廣西壯族自治區南寧市中考試題)如圖點P表示廣場上的一盞照明燈。
(1)請你在圖中畫出小敏在照明燈P照射下的影子(用線段表示);
(2)若小麗到燈柱MO的距離為1.5米,小麗目測照明燈P的仰角為55°,她的目高QB為1.6米,試求照明燈P到地面的距離;結果精確到0.1米;參考數據:tan55 °≈1.428,sin55°≈0.819,cos55°≈0.574。
解:(1)如圖,線段AC是小敏的影子。
(2)過點Q作QE⊥MO於E,過點P作PF⊥AB於F,交EQ於點D,則PF⊥EQ。在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3(米)。
∵tan55°=
∴PD=3 tan55°≈4.3(米)
∵DF=QB=1.6米
∴PF=PD+DF=4.3+1.6=5.9(米)。
答:照明燈到地面的距離為5.9米。
五、建立「統計」模型
統計知識在自然科學、經濟、人文、管理、工程技術等眾多領域有著越來越多的應用。諸如公司招聘、人口統計、各類投標選舉等問題,常要將實際問題轉化為「統計」模型,利用有關統計知識加以解決。
例5 (2007年後湖北省荊州市中考試題)為了了解全市今年8萬名初中畢業生的體育升學考試成績狀況(滿分為30分,得分均是整數),從中隨機抽取了部分學生的體育生學考試成績製成下面頻數分布直方圖(尚不完整),已知第一小組的頻率為0.12。回答下列問題:
(1)在這個問題中,總體是 ,樣本容量為

(2)第四小組的頻率為 ,請補全頻數分布直方圖。
(3)被抽取的樣本的中位數落在第 小組內。
(4)若成績在24分以上的為「優秀」,請估計今年全市初中畢業生的體育升學考試成績為「優秀」的人數。
解:(1)8萬名初中畢業生的體育升學考試 成績, =500。
(2)0.26,補圖如圖所示。
(3)三.
(4)由樣本知優秀率為 100%=28%
∴估計8萬名初中畢業生的體育升學成績優秀的人數為28%×80000=22400(人)。
六、建立「概率」模型
概率在社會生活及科學領域中用途非常廣泛,諸如游戲公平問題、彩票中獎問題、預測球隊勝負等問題,常可建立概率模型求解。
例6 (2007年遼寧省中考試題)四張質地相同的卡片如圖所示。將卡片洗勻後,背面朝上放置在桌面上。

㈡ 初中數學的11個模型

1、數與式模型
2、方程模型
3、不等式模型
4、初等函數模型
5、函數綜合模型
6、輔助線模型
7、幾何變換模型
8、圓模型
9、概率統計模型
10、開放探究模型
11、閱讀理解題模型

㈢ 初中幾何42個模型及題型有哪些

模型:正方形、長方形、三角形、四邊形、平行四邊形、菱形、梯形、圓、扇形、弓形、圓環、立方體、長方體、圓柱、圓台、稜柱、稜台、圓錐、棱錐。

正方形:四條邊都相等、四個角都是直角的四邊形是正方形。正方形的兩組對邊分別平行,四條邊都相等;四個角都是90°;對角線互相垂直、平分且相等,每條對角線都平分一組對角。

圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。

幾何模型

通常與用演算法隱式定義形狀的過程模型和面向對象模型有所不同,它也與數字圖像和立體模型不同,並且與用隱模型表示的數學模型如任意多項式的零集也有所不同。

但是,這些區別可能會經常變得不太明顯:例如,幾何形狀可以用面向對象編程中的對象來表示;數字圖像也可以解釋為一組正方形顏色的組合;像圓這樣的幾何形狀也可以用數學方程來表示。另外分形物體的建模經常要同時使用幾何模型與過程模型技術。

閱讀全文

與初中數學幾何模型有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1692
西安瑞禧生物科技有限公司怎麼樣 瀏覽:949
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1642
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050